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Graph optimization problems (such as minimum vertex cover, maximum cut, travelling salesman problems) appear in many
ields including social sciences, power systems, chemistry, and bioinformatics. Recently, deep reinforcement learning (DRL)
has shown success in automatically learning good heuristics to solve graph optimization problems. However, the existing
RL systems either do not support graph RL environments or do not support multiple or many GPUs in a distributed setting.
This has compromised the ability of reinforcement learning in solving large-scale graph optimization problems due to lack
of parallelization and high scalability. To address the challenges of parallelization and scalability, we develop RL4GO, a
high performance distributed-GPU DRL framework for solving graph optimization problems. RL4GO focuses on a class of
computationally demanding RL problems, where both RL environment and the policy model are highly computation intensive.
Traditional reinforcement learning systems often assume either the RL environment is of low time-complexity or policy
model is small.

In this work, we distribute large-scale graphs across distributed GPUs, and use the spatial parallelism and data parallelism
to achieve scalable performance. We compare and analyze the performance of the spatial parallelism and data parallelism, and
show their diferences. To support graph neural network (GNN) layers that take as input data samples partitioned across
distributed GPUs, we design parallel mathematical kernels to perform operations on distributed 3D sparse and 3D dense
tensors. To handle costly RL environments, we design a parallel graph environment to scale up all RL-environment related
operations. By combining the scalable GNN layers with the scalable RL environment, we are able to develop high performance
RL4GO training and inference algorithms in parallel. Furthermore, we propose two optimization techniquesÐreplay bufer
on-the-ly graph generation and adaptive multiple-node selectionÐto minimize the spatial cost and accelerate reinforcement
learning. This work also conducts in-depth analyses of parallel eiciency and memory cost, and shows that the designed
RL4GO algorithms are scalable on numerous distributed GPUs. Evaluations on large-scale graphs show that 1) RL4GO
training and inference can achieve good parallel eiciency on 192 GPUs; 2) its training time can be 18 times faster than the
state-of-the-art Gorila distributed RL framework [34]; and 3) its inference performance achieves a 26 times improvement over
Gorila.

CCS Concepts: · Reinforcement Learning; · Optimization Problems over Graphs; · Distributed GPU Computing; ·
Open AI Software Environment;

Additional Key Words and Phrases: Parallel Machine Learning System; High Performance Computing

1 INTRODUCTION

The study of NP-hard optimization problems over graphs (aka graph optimization problems) is one of the most
important research areas in computer science with a wide variety of applications including social sciences [7, 23,
29], power systems [2, 5], chemistry [41], and bioinformatics [6, 40]. Researchers have designed three types of
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algorithms (i.e., exact, approximation, and heuristic algorithms) to solve these problems in practice. The type of
exact algorithms can ind optimal solutions but only work for small-size graphs or graph problems with ixed
parameters [11]. The type of approximation algorithms have polynomial time complexities and guarantee an
upper bound on their approximation ratios, but their solutions are often much worse than the optimal solutions.
The type of heuristic algorithms utilize certain heuristics to search for optimal solutions, and can generally ind
high-quality solutions with faster performance than the approximation algorithms.
However, not only do heuristic algorithms require domain-speciic expert knowledge, but their efectiveness

also depends on special properties of graphs. Recently, a few works start to use reinforcement learning (RL) and
graph neural network (GNN) based policy models to learn good heuristics automatically (instead of manually
designed heuristics) [4, 10, 19, 38], which have shown promising results. The rationale behind this methodology
is that many real-world applications need to solve the same type of optimization problems repeatedly, in which
the problem instances maintain a similar combinatorial structure but having diferent data. Hence, reinforcement
learning techniques can be used in such situations intelligently to exploit the property to learn efective heuristics
for diferent graph optimization problems. For instance, Dai et al. [10], Barrett et al. [4], and Prouvost et al.
[38] demonstrate that RL-based algorithms can signiicantly outperform the state-of-the-art approximation and
heuristic algorithms with less execution time (e.g., for details, please refer to Table 3 in Zheng et al.’s work [50],
and Fig. 2 and Fig. 3 in Dai et al.’s work [10]).

Since 2015, several distributed reinforcement learning frameworks have been developed to utilize GPU clusters
to speed up the learning of policy models. These frameworks use the widely used data parallelism (also called batch
parallelism) to train policy models on distributed GPUs, and can be integrated with an existing or user-deined RL
environment. However, they difer from our proposed framework in three aspects. First, their RL environments
execute each episode sequentially while ours can support parallel execution of each episode. Second, they use the
data parallelism method that requires each GPU own at least one whole graph for both RL training and inference,
which results in several issues (to be discussed in Section 7.3). Third, although some of the distributed frameworks
support executing multiple RL environments in parallel, they only improve throughput but not latency (i.e., each
episode takes the same amount of time due to a lack of parallel support in their RL environments).

In this paper, we build a new RL framework for solving graph optimization problems to achieve high scalability
especially for large-scale graphs on distributed GPUs, which is called RL4GO. The existing RL work on graph
optimizations [4, 19, 38, 50] either utilizes one GPU for RL, or does not scale well to address big graph optimization
problems arising from real world applications (e.g., an Amazon review graph can have 6 million nodes and 180
million edges [31], a Twitter graph can have 17 million nodes and 476 million edges [47], and more large graphs
from diferent domains [25]). Here, the objective of scalability is to not only minimize the inference time for an
individual big graph, but also minimize the training time on graphs by using many GPUs. So far, achieving high
scalability of RL over large graphs has rarely been studied. Besides reducing execution time, another complexity
is that the quality of the solution by using many GPUs must be comparable to that of using a single GPU. And
the convergence rate on many GPUs should not degrade either. Hence, our many-GPU based RL4GO framework
is carefully developed to ofer the same solution quality and to converge with the same number of training steps
as the single-GPU implementation, meanwhile achieving high performance. We believe that this deterministic
behavior should be a desirable feature of any parallel machine learning system whenever possible.

To obtain high scalability in RL4GO, we introduce the following three methodologies:
(1) Spatial parallelism method devoted to coping with large graphs and enabling scalable reinforcement learning.

Solving large-scale graph-optimization problems is time consuming, which demands an eicient parallelization
strategy. To that end, this work focuses on supporting nontrivial big graphs, in which cases RL inference on
a single graph may take a long time, or a graph size may exceed a single GPU’s memory. We take a holistic
approach to parallelizing RL4GO’s environment, agent, replay bufer, and policy-model training, going from
the environment frontend to the training backend. Every RL stage’s data in RL4GO is partitioned across and

ACM Trans. Parallel Comput.



Distributed-GPU Deep Reinforcement Learning System for Large Graphs • 3

computed by all GPUs. Our graph-based RL environment is realized by scalable parallel graph processing. In
our implementation, all GPUs use the same set of random seeds to make unanimous decisions and collectively
perform the same computing task. This ensures that the result of using multiple GPUs is the same as that of
using one GPU. In addition to spatial parallelism, we also use the most popular method of data parallelism
(by extending Gorila [34]) to support distributed RL over large graphs. Section 7.3 compares and analyzes the
diferences between RL4GO and Gorila.

(2) Parallel GNN kernels designed for a series of 3D sparse-tensor and 3D dense-tensor operations in a distributed
setting. As Section 4.5 will show, a modern message-passing GNN model such as structure2vec [9] consists
of multiple non-trivial embedding layers and action-evaluation layers, whose operations involve summation,
concatenation, multiplication, aggregation, and transformation of mixed 2D and 3D sparse and dense tensors. Note
that other message-passing models have a similar message-passing structure. Today, it is still rather challenging to
design eicient parallel machine learning kernels due to the following three reasons. First, the existing distributed
machine learning libraries (such as PyTorch, Tensorlow) have no support for parallel computing on 3D sparse
tensors (however, 2D sparse tensors are supported). Hence we need to design parallel kernels to support it. Second,
it takes great eforts to convert a node-level mathematical model to a parallel computing kernel that can compute
on many graphs each with many nodes all at once. Third, every data structure is distributed across many GPUs for
achieving perfect scaling. When we design our parallel machine learning kernels, we must make sure the parallel
forward propagation algorithm is scalable, and the corresponding backward propagation must be correct based
on the automatic diferentiation engine. A good alternative approach is to develop customized parallel backward
kernels (a method used by CAGNET [42]), instead of using automatic diferentiation. However, owing to a long
list of operators needed by the structure2vec based GNN model, we choose to utilize the automatic diferentiation
method (a native feature provided by PyTorch and Tensorlow) to avoid rewriting many backpropagation kernels.

(3) Optimization of replay-bufer memory cost, and optimization of multiple-node selection for RL agent. Graph-
based reinforcement learning is diferent from traditional reinforcement learning in that the traditional RL’s
experience tuple of (state��� , action, reward, state���) often assumes the size of each ����� is small, however
graphs have a nontrivial size to store in memory. A typical replay bufer stores tens of thousands of experience
tuples. For graph-based reinforcement learning, this requires that a replay bufer keeps tens of thousands of
graphs at any time. In Section 5.1, we describe howwe design a dynamic graph-state constructor and a few parallel
kernels to save space and augment the capacity of graph-based replay bufer. The other optimization is devised
to speed up the RL4GO inference process. Traditional RL methods decide only one action at a time by evaluating
the agent’s policy model once. It takes up to� steps and� model evaluations to ind an optimized solution given
a graph with � nodes. Given a large-scale graph, this process can be very time consuming. To accelerate the
graph RL inference process, we design an adaptive optimization strategy to use one step to simultaneously select
multiple nodes, while still maintaining a comparable quality of solution. In Section 5.2, we show how we design
the adaptive strategy, and in Section 7.4 we show its performance improvement.
Our prototype of RL4GO framework has an inherently open design, in which users can add new graph opti-

mization problems, new RL algorithms, and new GNN-based policy models, and play with arbitrary combinations
of them. We evaluate RL4GO against the state-of-the-art Google Gorila with various types of graphs using many
distributed GPUs. For RL training with synthetic graphs, RL4GO is 14.5 times faster than Gorila on 6 GPUs and
18 times faster on 96 GPUs. As for RL inference, RL4GO is � times faster than Gorila for large graphs due to
RL4GO utilizing � GPUs simultaneously.

In summary, this paper makes the following contributions:

• We propose an open-design distributed graph reinforcement learning framework, which allows users to add
new graph optimization problems, incorporate diferent embedding models, and do research with emerging
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RL algorithms. We demonstrate that RL4GO is scalable, and can reduce the RL training time by 31.3 times
and RL inference time by 54.5 times as the number of GPUs increases from 6 to 192 (in Section 7.5).
• To handle large-scale graph optimization problems, a new spatial-parallelism based RL algorithm (including
both parallel GNN training and parallel RL environment) is created (in Section 4). To enable and evaluate
the new algorithm in RL4GO, we design and develop eicient parallel ML kernels that work on many GPUs.
An analytical performance model shows that the algorithm is scalable as the number of GPUs increases
(in Section 6). Not only do we ind that our new method is more scalable than the classic data parallelism
method, but also our method requires a much smaller minibatch size than the data parallelism method.
Both factors have contributed to the 18 times speedup over Gorila in terms of RL training performance.
• A set of parallel numerical kernels are designed for the complex structure2vec message-passing GNN model
(in Section 4), which can be extended to realize other message-passing GNN models on distributed GPUs.
• We propose two optimization methods: replay bufer memory optimization and multiple-node selection
optimization (in Section 5). The irst optimization method can reduce the replay bufer space by �(�) times
assuming each graph has � edges, and the second optimization method can accelerate the RL4GO inference
speed by up to 4.1 times (in Section 7.4).

2 RELATED WORK

There are two classes of works related to our proposed RL4GO work. First, a few distributed RL frameworks have
been designed to solve RL problems, which include Gorila [34], Impala [13], BA3C [1], PARL [35], and Ray RLlib
[27]. Although some of them work on distributed GPUs, none of them supports graph optimization problems.
For the several frameworks that support distributed GPUs, they only support the conventional data parallelism
method for RL training, and their RL inference latency is constrained by using only one GPU (e.g., Gorila [34],
Ray RLlib [27]). Our work proposes using the spatial parallelism method and designing new parallel kernels for
distributed RL, and reveals their advantages over data parallelism on large graph problems in both training and
inference scenarios.

Second, there are recent works that employ RL to solve combinatorial optimization problems. However, most
of them only support a single GPU, and are not designed to be an extensible open software framework. Barrett et
al. [4] develop the ECO-DQN RL algorithm to allow exploration at test time to solve Maximum Cut. Tang et al.
[39] deploy RL to select cuts to solve Integer Programming. Other related works include OpenGraphGym [50],
OR-Gym [19], and Ecole [38]. Among them, OpenGraphGym works on multiple GPUs, but cannot handle large
graphs whose data exceed a single GPU’s memory, and has limited scalability when using multiple GPUs (e.g.,
using 4 GPUs is faster than 1 GPU by 29%). In addition, the initial release of OpenGraphGym and the ECO-
DQN software use dense matrices to represent and compute graph adjacency matrices. However, using dense
matrix computations takes much longer time to compute and much more memory space than using sparse
matrices. For example, our experimental results show that the new RL4GO system can be up to 160 times faster
than OpenGraphGym when the size of a graph is as big as 1,000. As a inal point, we should mention that
some research eforts try to use supervised deep learning and GNN models to solve graph-related optimization
problems [14, 16, 28, 30, 43, 46, 48, 49]. However, they require a large number of problem instances with known
optimal solutions for supervised training, and their research approach completely difers from ours in that we
use unsupervised distributed reinforcement learning.

3 BACKGROUND

3.1 Applying RL to Solve Graph Optimization Problems

Reinforcement learning (RL) is a process of trial-and-error interactions between the agent and the environment
[21]. To apply RL to graph optimization problems, we build three major components in the framework: 1) Graph
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Environment, 2) Graph Learning Agent, and 3) Policy Model, as shown in Fig. 1. We introduce each of them as
follows.
(1) Graph Environment is used to simulate a graph optimization problem. Each graph optimization problem

needs its own implementation of graph RL environment. Graph Environment takes as input a graph-speciic
action (e.g., select/delete a node/edge, etc.), executes the action, then returns the updated graph-problem state
and a reward.

(2) Graph Learning Agent is trained to learn an optimal Policy Model, with which an optimized action can be
decided. Two subcomponents must be considered when creating an agent: which RL algorithm and which policy
model to use. In an open-design RL framework, diferent RL algorithms, such as PPO, DDPG, and DQN, can be
used by the Graph Learning Agent. On the other hand (orthogonal to the irst subcomponent of RL algorithm),
users can play with diferent policy models and embed them in the RL agent.

(3) A Policy Model consists of a graph-embedding model and an action-evaluation model. The graph-embedding
model is responsible for generating embeddings for a graph. The action-evaluation model takes embedding
vectors as input, and decides which node(s) should be selected and added to a graph’s partial solution. There are
other graph embedding models [9, 15, 37], and users may try diferent embedding models than the one presented
in this paper. Moreover, our framework can automatically combine a graph embedding and an action-evaluation
model into one policy model as a whole to perform distributed reinforcement learning.

3.2 Existing Distributed RL Frameworks

Recent progress in RL leads to a number of distributed RL frameworks [1, 13, 18, 27, 34, 35]. We briely introduce
the parallel software design used by the distributed RL frameworks (e.g., Google Gorila [34] and Ray RLlib [27])
as follows.

First, they all support running multiple or many agents in parallel. Given � GPUs, they can launch � learning
bundles (or groups), each of which includes an independent agent, a full copy of the policy model, an independent
environment, and a private replay bufer. Each agent interacts with its own environment during training. At
every step, each agent generates its own experience tuples and pushes them to its private replay bufer.

Second, during the training time, each agent samples a mini-batch of tuples from its replay bufer to compute a
gradient vector using the data parallelism method. In the data parallelism method, every mini-batch of training
samples is divided into subsets of the mini-batch and distributed across all agents. Each agent only executes on a
subset of the training samples to compute the gradients. Then, the gradients of each agent are aggregated and
synchronized through either collective communications or parameter servers. Finally, each agent will update its
policy model based on the aggregated gradients.

Graph Environment
State of graph, Reward

Graph Embedding Model Action-evaluation Model

Graph Learning Agent

Action of updating graph

Policy Model

Fig. 1. Major components for applying deep reinforcement learning to graph optimization problems.
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However, the existing distributed RL frameworks have some limitations when solving large-scale graph
optimization problems. The limitations are described below:

• All their RL environment operations are inherently sequential (i.e., each agent has a sequentially executed
environment, and no parallelization supported). For instance, as to Ray RLlib, although each worker can have
multiple environment instances to increase throughput, it cannot reduce the latency of each RL environment.
• Given a large number of GPUs, the frameworks are not able to scale up eiciently (e.g., Gorila shows a speedup
of 10 times by using 100 GPUs and 30 parameter servers [34] with Atari games).
• Although the most widely used approach of data parallelism is simpler to implement, it is bottlenecked by the
serial processing of one graph per GPU in its RL environment and policy model training. Also, due to a similar
reason, they do not support large-scale graphs whose size exceeds a single GPU’s memory. In this work, we
use the spatial parallelism approach to design a distributed RL framework to address the bottlenecks.

To compare the existing distributed RL framework with our proposed RL4GO framework, we develop an
implementation based on Gorila, to which we add graph RL environments and the synchronous all_reduce
communication kernels. Section 7.3 will show a comparison of their performances and an in-depth performance
analysis.

3.3 Notation

We now deine some notation that will be used throughout this paper.

Variable Deinition Variable Deinition Variable Deinition

� a graph � adjacency matrix of a graph � nodes of a graph
� #nodes � partial solution of a graph � (�) neighbor nodes of �
�� embedding model � evaluation model �1 − �7 model parameters
� minibatch size � #embedding-layers � dimension of embedding
� #GPUs � replay bufer size � �-th time step for a graph
��� � �-th GPU �� partition of � on ��� � �� partition of � on ��� �

�� node selected at time � � edge prob. for ER graphs � #connections for BA graphs

Table 1. Notation used in this paper.

4 SYSTEM DESIGN OF RL4GO

This section presents the design of the RL4GO framework. We use the classic Minimum Vertex Cover (MVC)
problem as an example to explain the system design. Our current RL4GO prototype also supports the Traveling
Salesman Problem (TSP) and Maximum Cut (MC) problem. Since TSP and MC show similar accuracy and
performance results as MVC, they are not included in the paper. As a matter of fact, RL environments of TSP and
MC are easier to realize than that of MVC since they do not need to update graphs’ edges.

The MVC problem is deined as follows: Given a graph� = (� , �), ind the smallest set of nodes �⊆� such that
every edge in � is incident to at least one node in � .

4.1 The Programming Interface

RL4GO provides a simple and generic RL programming interface. A template using the interface is shown
in Alg. 1. In the template, users irst initialize a Graph Learning Agent that is conigured with a pre-deined
graph-embedding model and an action-evaluation model. In each episode, RL4GO randomly picks a training
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graph g, then creates a graph environment Env by passing in the name of the graph optimization problem and
graph g. At each step t, the agent selects a node �� to be added to the partial solution either randomly or using the
policy model. After the environment executes the action �� , the agent receives a reward signal and a termination
done signal from the environment. After that, the agent adds a new experience tuple to its replay bufer.

Algorithm 1 A template to apply RL4GO programming interface to graph optimization problems.

Input: Graph_Dataset: a set of training graphs
�� : a graph embedding model
� : an action-evaluation model

1: �: mini-batch size
2: �: replay bufer size
3: /∗ Create an RL agent using the given policy model EM and Q ∗/
4: Agent←− Graph_Learning_Agent(EM, Q, Replay_Bufer_Size = R)
5: for each ������� � do
6: Randomly pick a graph � from Graph_Dataset
7: /∗ Create a new graph problem environment with graph � ∗/
8: Env←− Graph_Env(graph_problem_name, g)
9: for each ���� � do

10: �� =

{

Select a node randomly, or
Agent.Act(Env.Get_Current_State())

11: reward, done = Env.Step(�� )
12: /∗ Push the tuple to replay bufer ∗/
13: Agent.Remember(Env.Get_Previous_State(), �� , reward,

Env.Get_Current_State())
14: /∗ Sample a batch of tuples from the replay bufer ∗/
15: tuples_batch = Agent.Sample(size = B)
16: /∗ Apply iterations to train �� and � ∗/
17: Agent.Train(tuples_batch)
18: if (done) break
19: end for

20: end for

To train the policy model (i.e., the EM and Q models), the agent samples a mini-batch of experience tuples
from its replay bufer. Then, the agent performs forward and backward propagations to train the model. When
an episode is completed, RL4GO starts another episode by selecting a new graph. RL4GO also provides a higher-
level programming interface, in which the two-level nested loop of Alg. 1 is encapsulated into a class named
TrainingRun. A single line of code TrainingRun(agent, env, dataset_attr) can replace the entire two-level
nested loop.

4.2 Challenges to Implementing RL4GO

To solve large-scale graph optimization problems using many GPUs, we must parallelize Alg. 1 in an efective
way, and address the following issues:

• How to handle big graph problems where a graph may require more memory than a single GPU can provide?
• How to design eicient parallel RL training algorithms on many GPUs? Parallel RL training may use medium- to
large-scale graphs to train a policy model. We need to design a scalable parallel RL training algorithm to do it.
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• How to design eicient parallel RL inference algorithms on many GPUs? RL inference is diferent from RL training
in that the inference process often targets larger-scale graphs, and its dominant computation may shift from
model training to other components (e.g., its graph RL environment). Also, unseen test graphs (one or multiple)
are typically at large scales, and will need multiple or many GPUs to store and solve the problem in parallel.
Thus, we need to design a scalable RL inference algorithm for many GPUs.
• How to design optimization techniques to further speed up both training and inference? We propose an optimization
method to minimize the space of replay bufer, and another optimization method (i.e., adaptive multiple-node
selection) to reduce the time of parallel RL inference, respectively. Section 5 will present the two optimizations.

4.3 Basic Data Structures

The state of each graph is represented by its adjacency matrix A and current partial solution S. An adjacency
matrix A is represented by an �×� matrix, where N is the number of nodes. In our current prototype, we use
the row block data distribution method to partition a graph. More sophisticated methods such as the METIS
graph partitioning method [22] can also be added to the framework.
RL4GO is designed to support parallel RL training and inference for big graphs. To handle a number of big

graphs at the same time (e.g., during RL training), we stack the graphs together and treat them as a 3D sparse
tensor. Given a batch of B graphs and P GPUs, each GPU is assigned with a 3D sub-tensor of dimension �×�

�
×�

for storing the batch’s adjacency matrices, and a 3D sub-tensor of �×�
�
×1 for storing the batch’s partial solutions.

The set of � graphs may have diferent numbers of nodes per graph. In our parallel kernel implementation
(in Section 4.5), each graph is stored as a sparse matrix � in the COO (Coordinate) format. To enable batched
computing on each GPU, the dimension of a smaller graph will be set to the dimension of the largest graph
meanwhile the set of non-zero elements in its sparse COO matrix is still the same as before.

Space Cost: As mentioned earlier, each graph’s adjacency matrix is stored in the Sparse COO format. The

amount of memory required for storing one adjacency matrix is 20� 2�

�
bytes on each GPU, where � represents

the probability that each possible edge is existing or not. Note that � 2� is equal to the number of edges. Given a

batch of B graphs, the adjacency-matrix tensor consumes 20� 2��

�
bytes on each GPU. Also, given a replay bufer

size of R experience tuples, it takes 8�(�
�
+ 1) bytes to store the R experience tuples on each GPU. As an example,

a 16GB GPU can store a graph with up to 400 million edges in the RL4GO framework.

4.4 Designing a Parallel Graph RL Environment

Execution time of RL environments is often considered to be short and not treated with a high priority in
traditional RL frameworks. However, as Table 3 will show, the Gorila system can spend 30% of the total execution
time on its RL environment for ER graphs with 0.85 million edges. In this subsection, we present how to parallelize
the graph RL environment computing operations eiciently.

In RL4GO, a graph RL environment will be initialized with an input graph � that has all the edges, and a partial
solution � that is empty at the beginning. As the RL process starts, an RL agent will look at the current graph
problem’s state (i.e., what is the current partial solution and what is the current graph status), and make intelligent
decisions. Whenever an RL agent decides an action (e.g., selecting a new node to be added to the current partial
solution to the MVC graph problem), the RL environment immediately updates the graph problem’s state and
adjacency matrix to denote that the connected edges of the node are not in the graph, as required by the MVC
problem. Since a graph’s adjacency matrix is distributed across GPUs, we need to develop a parallel graph-state
updating method, which will take the following two steps. At the irst step, each GPU updates its local subgraph
by checking whether any of its outgoing/incoming edges is connected to the deleted node. If yes, that edge is
deleted.
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At the second step, due to those newly deleted edges, some nodes become new isolated nodes (i.e., nodes without
edges), which should not be considered as partial solutions. Hence, each GPU starts to search for the newly
formed isolated nodes. If the recently deleted node has � neighbors, each GPU takes � iterations to check
if each of the neighbor � will become a new isolated node or not. In each iteration, each GPU scans its local
subgraph to check if any of its edges (both incoming and outgoing) is incident on the neighbor �. However, given
� GPUs, it is possible to take fewer than� iterations since the� neighbors can be scattered across the � GPUs.
Eventually, the second step results in a super-linear speedup when the number of neighbors� is a large value.
Several experimental results displayed in Section 7 show a super-linear speedup owing to this parallel graph-state
updating method. We also want to point out that if we add the hierarchical METIS partitioning methodÐwhich
tends to divide a graph into clusters or partitions of neighboring nodesÐthe super-linear speedup described here
will happen less frequently and the second step will likely have a linear speedup in our RL4GO framework.

4.5 Implementation of Parallel Numerical Kernels for Graph-Embedding and Action-Evaluation

Models

In RL4GO, an agent’s policy model consists of two diferent neural network models: 1) a graph-embedding
model, and 2) an action-evaluation model. These two models are connected into a łcombinedž model, which
takes as input the current state of a graph, and yields scores for each node. A modern message-passing model
structure2vec [9] is used in the current prototype of RL4GO. Other message-passing models [33, 44, 45] often have
a similar message-passing structure, and we will extend the current structure2vec kernels to add other models to
the RL4GO framework. As for a single GPU, other message-passing models can be added to RL4GO directly with
little or no modiication.
Next, we present how to design and implement parallel kernels for the graph-embedding model and action-

evaluation model on distributed GPUs, respectively. As shown in the Notation Table 1, we use � to denote the size
of a batch of graphs, � to denote the dimension of graph-embedding vectors, � denote the number of recurrent
graph-embedding layers, � the number of nodes of each graph, � the number of GPUs, and � � = �

�
the number

of nodes allocated to the i-th GPU (marked by łGPU�ž).
1) Parallel Kernels for the Graph-Embedding Model:

The graph-embedding model is deined by mathematical Equation (1):

������� = ����
(

�1�� + �4
∑

�∈� (�)
������−1� + � 3

∑

�∈� (�)
����(� 2� (�,�))

)

, (1)

where ������� is the embedding of node � at the �-th embedding layer, �� is node � ’s property, and� (�,�) is the
weight on the edge between � and �. �1, �2, �3, and �4 are the model parameters to be learned by RL.

The mathematical Equation (1) basically expresses how to decide the embedding for a single node. To handle a
large number of nodes from a batch of graphs, we reformulate Equation (1) into tensor operations. We design
three parallel kernels that can execute on a number of distributed GPUs, and describe them as follows. The three
parallel kernels are named as NU (Node Update), EG (Embedding Gathering), and EWG (Edge-Weight Gathering).
During RL execution, all GPUs will call the same kernels, and each GPU� will compute for ������1, �����

�
2, and

������3 consecutively.

• ������1← NU(�1, �� ): This kernel corresponds to the mathematical term �1�� . Argument ��∈R�×�
�×1 is the

current partial solutions to a batch of B graphs stored on the i-th GPU. The kernel irst duplicates �1 for B times
so that the dimension of �1 extends from �×1 to �×�×1. Next, it computes a 3D dense tensor and dense tensor
multiplication: ������1←(�1)�×�×1×((�

� )�×� �×1)
� . The output ������1 (∈�×�×�

� ) stores the intermediate
embeddings for a 1

�
portion of graph nodes for B graphs.
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• ������2 ← EG(�4, �����
�
��� , �

� ): It corresponds to the term �4
∑

�∈� (�)
������−1� . The kernel computes the

sum of all the neighbor embeddings of each node. Argument � 4∈R�×� is a model parameter. Argument
��∈R�×�

�×� is a batch of sparse adjacency matrices stored on GPU� . Due to using the spatial parallelism
method, the parallel �� kernel divides each adjacency matrix into diferent GPUs along the matrix row
dimension. This way the batch size � does not have to depend on the number of GPUs. In this kernel, the sum of
all the neighbors is computed in two steps: 1) Each GPUmultiplies a 3D sparse tensor with a 3D dense tensor, i.e.,
PartialSum←((�� )�×� �×� )

�×(��������� )�×� �×� . This step is conducted based on the duality principle between
graph operations and matrix multiplication. 2) We use all_reduce to compute the inal sum of the embeddings
across all GPUs (i.e., ����×�×� ). Finally, each GPU� computes ������2←(�4)�×�×� × (����×� �×� )

� .
• ������3 ← EWG(�2, �3, �� ): The kernel aggregates the weights on the edges connected to each node, corre-
sponding to �3

∑

�∈� (�)����(� 2� (�,�)). We irst compute the sum over all neighbors by a 3D sparse tensor and
dense tensor multiply: (Sum)�×� �×�←(�� )�×� �×�×(�2)�×�×� . After relu, we compute ������3←(�3)�×�×�×

Sum�
�×� �×�

.

In the end, we add the three intermediate embeddings (i.e., ������1, �����
�
2, and �����

�
3) to obtain the inal

embedding for the subset of nodes of B graphs that reside on GPU� .
Note that given � embedding layers, the above computations will repeat � times by passing the previous

embedding layer’s output to the next layer.
2) Parallel Kernels for the Action-Evaluation Model:

After getting the above computed embedding result, the action-evaluation model continues to compute scores
for all the candidate nodes. This model has three parameters: � 5, � 6, � 7. The equation to compute the score for a
single node � is expressed as follows:

������ = �
�
7 ����[� 5

︁

�∈�

������ | | � 6������], (2)

where [� | | �] denotes the operation to concatenate two vectors. To compute scores for many nodes and for
a batch of graphs all at once, on distributed GPUs, we design the following three parallel kernels to compute
Equation (2). The three kernels are: ES (Embedding Sum), EM (Embedding Multiply), and NS (Node Scores).

• � �
1 ← ES(�5, ������ ): This kernel corresponds to the term �5

∑

�∈� ������ . ES computes the sum of the
embeddings of all the nodes for � graphs. It goes through three steps: 1) compute the sum of embeddings
for all the local nodes allocated on GPU� , then 2) use all_reduce to get the global sum ���_����� from all
GPUs, and 3) duplicate � 5 for B times to form a �×�×� tensor, then compute a tensor-tensor multiplication:
� �

1←(�5)�×�×�×(���_�����)�×�×1.
• � �

2 ← EW(�6, ������ ): This kernel corresponds to the term � 6������ , which computes a tensor-tensor
multiplication by� �

2←(�6)�×�×�×(�����
� )�×�×� � .

• ������ ← NS(�7,� �
1 ,�

�
2 ): This kernel calculates the scores for the nodes located on GPU� . It expands� �

1 from
a �×�×1 tensor to a �×�×� � tensor. Then, it concatenates� �

1 and� �
2 into a �×2�×� � tensor. Next, it applies

ReLU to the concatenated result. Finally, it extends �7 from 1×2� to �×1×2� and multiplies it with the ReLUed
tensor. Its output is a �×1×� � tensor, which contains the scores of the partition of � � nodes of � graphs that
reside on GPU� .

4.6 The Parallel RL4GO Inference Algorithm

Based on the above parallel kernels, we are able to design the parallel RL4GO inference algorithm. Alg. 2 shows
the parallel inference algorithm executed by each GPU� . It takes as input one or multiple graphs, and uses the
pretrained embedding model and action-evaluation model to search for an optimal solution for each graph. Each
GPU stores a copy of the pretrained model parameters (i.e., �1-�7).
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Algorithm 2 Parallel RL4GO Inference on the �-th GPU GPU� .

Input: �1-�4: user-pretrained parameters for the graph embedding model
�5-�7: user-pretrained parameters for the action-evaluation model
� � : local subsets of nodes of the test graphs on GPU�

�� : local subsets of the adjacency matrices of the test graphs
1: �� = ∅: initial partial MVC solutions on GPU�

2: for step � = 0 to |� |−1 do ⊲ |� |: number of nodes in each graph
3: ������ = EM(�� , �� , �1 − �4) ⊲ EM consists of parallel kernels to compute Equation (1)
4: ������� = Q(������ , �5 − �7) ⊲ Q consists of parallel kernels to compute Equation (2)
5: ��������� = All-gather(������� ) ⊲ ������� ∈ R�×1×�

�

6: �� = �������∈� ������
��� ⊲ ��������� ∈ R�×1×�

7: �� += �� ;
8: �� ←− Update local �� by removing edges connected to ��
9: if a graph solution is complete then break
10: end for

As shown in Alg. 2, when the RL4GO inference algorithm begins, GPU� irst initializes its local partial-solution
subset ��∈�×� �×1. The inference algorithm takes up to |� | steps to ind an optimal solution. In each step t, GPU�

uses the pretrained model parameters (�1-�7) to predict scores for its local resident candidate nodes (Lines 3-4) by
computing the graph-embedding and action-evaluation models. After gathering all scores, the candidate node
with the highest score �� for each graph will be selected and added to the partial solution (Lines 6-7). The local
adjacency matrix �� is also updated accordingly based on the new action of selecting �� . The parallel inference
algorithm terminates when a complete solution is found.

4.7 The Parallel RL4GO Training Algorithm

The design of parallel RL4GO training algorithm is similar to Alg. 1. Given a number of P GPUs, P processes
will be launched in parallel. Every process Proc� utilizes one CPU and one GPU. During RL training, the RL
environment operations are executed on CPUs, meanwhile the agent’s policy model evaluation and training are
executed on GPUs, both in parallel. Each process Proc� has a copy of the agent’s policy model. In Line 15 of Alg. 1,
all processes carry out the distributed RL training step, in which Proc� samples a mini-batch of experience tuples
from the replay bufer, and launches a parallel training operation. Due to RL4GO using the spatial parallelism
approach, all the processes will work on the same mini-batch of graphs, where each individual graph is split
across all GPUs.

In Fig. 2, we use a simple example to illustrate how two parallel processes can conduct one step of RL training.
There are three stages in the igure. Stage 1: a new training graph is picked from the training dataset to start a
new episode. Stage 2: in the �-th training step, every process selects a node �� by either random exploration or
model-based exploitation. The unanimously selected �� leads to a new experience tuple and is added to the replay
bufer. Stage 3: each process samples a mini-batch of tuples from the replay bufer, and uses it to train the policy
model in parallel. Note that all three stages use the spatial parallelism method, where each graph is partitioned
into � GPUs. By contrast, Gorila uses the data parallelism, where each GPU takes one or multiple whole graphs.
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Fig. 2. An example of parallel RL4GO training on two processes. At the beginning of each episode, the agent on each process

picks a training graph from the training graph dataset. Then, each agent selects a node �� randomly or through policy

model. Next, the agent updates the corresponding local adjacency matrix �� , the local partial solutions �� , and the local

set of candidate nodes �� . The agent then forms a new tuple and pushed it to the replay bufer. Next, the agent samples

a mini-batch of tuples and transforms them into 3D tensors of �� , �� , �� , and the target values. Finally, the agent applies

multiple gradient descent steps to train the policy model.

5 NEW OPTIMIZATION METHODS

5.1 Optimization of the Replay Bufer Memory

A typical RL replay bufer contains tens of thousands of experience tuples. When solving a large graph problem,
an RL agent will see a lot of intermediate graph states, each of which represents a modiied graph. It will quickly
become too expensive to store many graph states (i.e., many large adjacency matrices). To solve the problem, we
store an index pointing to the original graph, and the current partial solution to minimize the memory cost of
replay bufer.

A signiicant amount of memory can be saved because a graph (with � edges) will only need an integer index
and a partial solution vector (a few 0’s and 1’s) to represent it. However, we need to recover the intermediate graph
state’s adjacency matrix before the training operation starts. To do that, each process uses the experience-tuple’s
stored partial solution and the original graph’s adjacency matrix to generate graphs dynamically at runtime.
This dynamic operation is realized by the Tuples2Graphs() function, which converts the information stored

in an experience tuple to a concrete adjacency matrix (�� ). Given a batch of � experience tuples, the function
converts the batch to a 3D tensor (i.e., a stack of adjacency matrices). Moreover, we stack the lists of partial
solution �� , and target_values from the batch of � tuples to form two additional 3D tensors. Finally, each GPU
can start to train the policy model by taking as input the above formed 3D tensors of ����ℎ��_�� , ����ℎ��_�� ,
and ����ℎ��_������_������ .
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5.2 Adaptive Multiple-Node Selection Strategy

The parallel RL inference algorithm (as shown in Alg. 2) may take up to |� | steps to solve a graph optimization
problem (i.e., it needs up to |� | rounds of policy model evaluations). In each policy model evaluation, only one
node (i.e., the one with the highest score) is chosen to become a part of the optimal solution.

To speed up such an essentially łsequentialž decision process, we design an adaptive multiple-node-selection
optimization strategy that, after all GPUs compute scores for all the candidate nodes, they collectively select
d nodes with the top d scores as a subset of the partial solution (Note: the original RL inference algorithm is a
special case with d = 1).

This adaptive optimization strategy is based upon our observations that, when the size of a graph is large, the
set of d nodes selected sequentially (through d steps) is comparable to the set of d nodes with top d scores (at
the beginning of the d steps). This way, our optimized RL agent is capable of selecting d best nodes based on 1

evaluation of the policy model, potentially achieving a speedup of d times.
However, we still need to igure out how to choose an appropriate value for � . Selecting a too large value of d

can result in a degraded quality of solution due to the decision being overly greedy. Therefore, we introduce an
adaptive scheme to gradually decrease the number of � selected nodes per step. The scheme works as follows:
when the current candidate node set size |� | is larger than �

2
, d is set to 8. |� | will become smaller as more nodes

become a part of the optimal solution. As |� |∈(�
4
, �
2
], d is set to 4. As |� |∈(�

8
, �
4
], d is lowered to 2. When |� |

becomes less than �
8
, d is set to 1. The rationale behind it is that when there are many candidate nodes, we can

aford to being aggressive, and gradually we should be conservative when there are fewer nodes left (due to �’s
bigger impact on smaller graphs). We demonstrate the efectiveness of this optimization strategy in Section 7.4.

6 ANALYTICAL PERFORMANCE MODEL

This section analyzes the parallel eiciency of the RL4GO framework’s three major computing components.
(1) Analysis of Computing the Graph-Embedding Model: The estimated execution time of the parallel graph-

embedding computation using P GPUs is expressed as follows:

���(�, �, �, �, �; � ) =
� 2

�
�� (� + � +

2 + � + �� + 3�

�
) + �� log2 � + �����, (3)

where � is network latency and � is the reciprocal of network bandwidth. There are a number of L all_reduce

communications, and each has a message of size �×�×� . Since the embedding dimension � and minibatch
size � are substantially less than the matrix size � for big graphs, each all_reduce essentially sends/receives a
vector of size �(� ).

Because the time of its sequential computation is:

���_���(�, �, �, �, �) = �
2�� (� + � +

2 + � + �� + 3�

�
) (4)

Its Parallel Eiciency ���(� ) = ( ��� (� )
���_���/�

)−1 ≈ (1 + ��

� (1+ �
� )
)−1, whose value is almost equal to 1.0 as � ≫ � .

Note that the communication time and its efect on parallel eiciency � are already considered in the formula.
(2) Analysis of Computing the Action-Evaluation Model: The estimated execution time of the action-evaluation

computation using P GPUs is:

���� (�, �, �, �, �; � ) =
���

�
(5 + � +

��

�
) + � log2 � + ��� (5)

This computation has a single all_reduce communication whose message size is �×� .
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Because the time complexity of its sequential version is:

����_���(�, �, �, �, �) = ��� (5 + � +
�

�
) (6)

the parallel eiciency of the action-evaluation component is:

���� (� ) = (
���� (� )

����_���/�
)−1 ≈ (1 +

�

�� + 1
+

�

� (� + 5)
)−1, (7)

where � = �+5
�

. Since �≫� , the Parallel Eiciency ���� (� ) is approximately equal to 1.0 too.
(3) Analysis of Executing the Graph RL Environment: In addition to utilizing GPUs, RL4GO also uses a number

of � CPUs on the hosts to simulate the graph RL environment, and generates experience tuples for RL training.
The RL environment operations computed by the hosts include: 1) Getting a reward signal, 2) sampling experience
tuples, 3) tracking and updating the current set of candidate nodes, 4) updating local subgraphs’ states, and 5)
generating training data based on experience tuples. Among them, the last three operations (i.e., tracking and
updating the current set of candidate nodes, updating local subgraph states, and generating adjacency-matrix

training data) need more than constant time �(1), and their time complexities are � 2�( 1
�2 +

1
�
), 2��

�
, and 2�� 2�

�
,

respectively.

7 EVALUATIONS

This section describes four diferent types of experiments, which target showing quality of solutions, compar-
ison between Gorila and RL4GO, improvement by the multiple-node selection optimization, and scalability
performance.

7.1 Experimental Setup

Hardware:We conduct experiments on the Summit supercomputer in the Oak Ridge National Laboratory. Each
Summit compute node consists of two IBM Power9 CPUs and six Nvidia V100 GPUs with 16GB memory that are
connected by NVLink. Each compute node has a host memory of 512GB. All compute nodes are connected by a
dual-rail Mellanox EDR 100G Ininiband interconnect.

Software: We use PyTorch 1.9.0 [36], NetworkX 2.5.1 [17], and optimization software package IBM-CPLEX

20.1.0.1 [20]. In the experiments, PyTorch is used to implement RL4GO, NetworkX is used to generate synthetic
graphs, and IBM-CPLEX is used to compute reference optimal solutions [8] to evaluate the quality of our solutions.
IBM-CPLEX is allowed to run up to 30 minutes to ind optimized solutions. Here, we want to comment that
RL4GO Inference only takes a few seconds to ind optimized solutions whose quality is comparable to that of
IBM-CPLEX (e.g., it takes RL4GO 22.7 seconds to solve large graphs with 14,400 nodes on 6 GPUs, as shown in
Fig. 6.b).

Graph Datasets:We use Erdős-Rényi (ER) graphs [12] and Barabási-Albert (BA) graphs [3] as well as real-world

graphs from the Stanford Network Analysis Project (SNAP) [25] to perform experiments. The generation of ER
graphs is controlled by the model ER(n, �), in which n is the number of nodes, and each pair of nodes has a
possibility of � to be connected with an edge. The generation of BA graphs is controlled by the model BA(n, d).
The BA model can generate a graph by incrementally adding new nodes to the existing graph. For every newly
added node, d edges are connected from the new node to the existing nodes. In addition to synthetic graphs,
Table 2 provides information of three real-world graphs used in our experiments.

Hyper-parameter Setting: In our RL4GO experiments, we set the reinforcement learning exploration rate (i.e.,

the greedy epsilon to select a random action) as a decayed rate that decreases from 0.9 to 0.1. We use the Adam
optimizer to train the policy model with a learning rate (�) of 1.0e−4. The size of the RL replay bufer is set to
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Table 2. Real-world large graphs [25].

Graph Name

Amazon [24] Berkeley&Stanford [26] Twitter [32]

#Nodes 403K 685K 81K

#Edges 3.3M 7.6M 1.9M

102 103 104

# mini-batch training

1.0

1.2

1.4

1.6

Av
er

ag
e 

ap
pr

ox
. r

at
io

#nodes = 50
#nodes = 100
#nodes = 150
#nodes = 200
#nodes = 250

(a) ER graphs

102 103 104

# mini-batch training

1.0

1.2

1.4

1.6

1.8

Av
er

ag
e 

ap
pr

ox
. r

at
io

#nodes = 50
#nodes = 100
#nodes = 150
#nodes = 200
#nodes = 250

(b) BA graphs

Fig. 3. uality of RL4GO solutions over ER (a) and BA graphs (b).

50,000. The discount factor (� ) for Bellman Equation is set to 0.9. The number of embedding layers (L) is set to 2.
The embedding dimension (K) is set to 16 for the ER and BA graphs, and 64 for real-world graphs.

7.2 Solutionuality of RL4GO

We use a set of unseen test graphs to evaluate the quality of solutions computed by RL4GO on a single GPU. We
calculate the Approximation Ratio (i.e., the ratio between the solution found by RL4GO and the optimal solution
found by CPLEX) for each individual test graph. If Approximation Ratio equals 1, it indicates that RL4GO’s
solution quality is as good as the optimal solution. We use the Average Approximation Ratio (AAR) to denote the
average solution quality of a number of test graphs.
Fig. 3 shows the Average Approximation Ratio (AAR) for reinforcement learning with ER graphs and BA

graphs, respectively. The graph sizes range from 50 to 250 nodes. From Fig. 3.a, we can see that for diferent sizes
of ER graphs, the RL4GO framework can converge to AAR=1.03 after 10,000 training steps. As for BA graphs (Fig.
3.b), RL4GO can reduce AAR from around 1.70 to 1.02 for diferent sizes of BA graphs after 10,000 training steps.
Furthermore, our RL experiments with larger graphs of 1,920 nodes show that RL4GO can also converge to a
good approximation ratio of AAR=1.01 (see Fig. 4).
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7.3 Learning Performance on Distributed GPUs: RL4GO vs. Gorila

Next, we compare the diference between RL4GO and Gorila over multiple GPUs. Here, we only show the
performance of RL training (not including the RL inference time). This is because Gorila can only efectively
utilize one GPU to do RL inference, and hence its RL reference time is overly long (i.e., � times longer than
RL4GO on � GPUs).

Experiments Using 1 to 6 GPUs: In Fig. 4, we show the learning progress of RL4GO in solid lines, and Gorila
in dashed lines, with 1, 2, 4, and 6 GPUs (represented by four diferent colors, respectively). The training and test
graphs are automatically generated ER graphs with 1,920 nodes and around 120,000 edges. As the number of
GPUs increases from 1 to 6, both RL4GO and Gorila take shorter training time to reach the same approximation
ratio. That is, their lines are shifting from upper-right to lower-left when using more GPUs. For instance, RL4GO
takes 53 minutes on 4 GPUs (the red solid line) and 36 minutes on 6 GPUs (the green solid line) to reach AAR=1.01.
Using 1 GPU and 2 GPUs takes much longer training time and is not shown in the scope of the igure. When
reaching AAR=1.01, using diferent numbers of GPUs may lead to MVC solutions with little diference due to
loating-point roundof errors and the nonassociativity property of loating point calculations. For instance, Fig. 4
shows that an MVC solution found by 4 GPUs is slightly smaller than that of 6 GPUs (their diference is just a
couple of nodes out of hundreds of nodes). At the same time, Gorila demonstrates a performance trend similar to
RL4GO when the number of GPUs is from 1 to 4. By contrast, notice that RL4GO only takes 36 minutes to reach
AAR=1.01 on 6 GPUs, while Gorila surprisingly needs to take more than 75 minutes on 6 GPUs to converge to
AAR=1.01 (the green dashed line). The slowdown of Gorila on 6 GPUs inspires us to continue to examine its
performance on an increasing number of GPUs.
Larger Experiments Using 6 to 96 GPUs: Fig. 5 shows the learning speed from 6 to 96 GPUs. We conduct

this experiment with larger-size ER graphs that have 3,360 nodes. Since Gorila uses the data parallelism method,
it requires its mini-batch size � to be at least equal to the number of GPUs (e.g., � is at least 96 when using 96
GPUs). By contrast, RL4GO does not have this limitation, and can utilize any mini-batch size (even �=1). Due to
the lexibility of coniguring � with RL4GO, we do three diferent experiments with RL4GO. The irst one uses
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Fig. 4. RL training performance of RL4GO and Gorila.
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�=96, which is the same as Gorila. In this way, RL4GO and Gorila have the same amount of training workload
since they have the same input size. The second and third experiments use �=16 and �=4, respectively.
As shown in Fig. 5, when �=96, it takes Gorila 8,728s (the red line), and RL4GO 6,279s (the top blue line)

to reach the target AAR=1.04 on 6 GPUs. As the number of GPUs increases from 6 to 96, Gorila and RL4GO
eventually reduce their RL training time to 2,338s and 468s, respectively. It indicates that RL4GO can outperform
Gorila by 5 times when using 96 GPUs and �=96. To understand the reason, we provide a detailed performance
analysis in the paragraph after next.

Also in Fig. 5, when the mini-batch size � is conigured to a smaller size such as �=16 and �=4, RL4GO takes
even less time to reach the target AAR=1.04. That is, RL4GO is 14.5 times faster than Gorila on 6 GPUs, and 18
times faster than Gorila on 96 GPUs. We believe that this experimental result shows an advantage of using the
spatial parallelism method, because RL4GO does not require � to be at least equal to the number of GPUs. It will
be even more beneicial when users run hundreds or even thousands of GPUs. In fact, it is also known that using
too large a mini-batch size may make neural network training converge slower or diverge.

Detailed Performance Analysis: To understand the performance diference between RL4GO and Gorila, we
measure the total execution time (Total time), the time spent on the RL agent (Agent time), and the time spent on
the graph RL environment (Env. time). Agent Time includes the time to convert a mini-batch of experience tuples
to 3D sparse/dense tensors, as well as the policy model’s training time.

Table 3 lists the time breakdown for Fig. 5’s four curves, which are Gorila (mini-batch size �=96), and RL4GO
using three mini-batch sizes �=96, 16, 4.

First, we compare the diference between Gorila (�=96) and RL4GO (�=96). On six GPUs, RL4GO is 1.4 times
faster than Gorila (total time: 6279.34s vs 8570.12s). Regarding agent time, Gorila takes 5529.29s while RL4GO
takes 5964.99s. That is, RL4GO is 7.8% slower than Gorila because RL4GO takes some time to convert a mini-batch
of experience tuples to 3D tensors. However, RL4GO’s environment time is nine times shorter than Gorila. The
reason is that RL4GO is capable of using six GPUs concurrently to execute its RL environment operations, while
Gorila can only utilize one GPU for its environment operations. In fact, this nine-times speedup is super-linear
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Fig. 5. Evaluation of RL4GO and Gorila on many GPUs with ER graphs. Y-axis is the training time needed to reach an

average approximation ratio of 1.04.
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(i.e., more than six) since our parallel graph-updating operation (as described in Section 4.4) can take fewer than
�
�
iterations, where� is the number of neighbors of the selected node and there are � GPUs.
Next, as the number of GPUs increases from 6 to 96 for Gorila (B=96), its total time decreases by 3.7 times

(from 8,570.12s to 2,338.09s). Meanwhile, the total time of RL4GO (B=96) decreased by 13.4 times. The reason
for achieving a much higher speedup from RL4GO than Gorila is as follows. Gorila’s RL environment time
is always around 2,000s since it uses one GPU for each of its environment instances (hence having the same
latency). However, RL4GO can continuously reduce its environment time when using more GPUs. For instance,
its environment time reduces by 3.8 times from 6 to 24 GPUs because of its parallel RL-environment execution
(312.81s versus 83.32s). On 48 GPUs, RL4GO’s environment time (per learning step) becomes as small as 0.02s.
Therefore, when usingmore than 48 GPUs, RL4GO cannot improve environment-time any further due to Amdahl’s
law. With respect to the agent time, both Gorila and RL4GO with �=96 can scale up eiciently as the number of
GPUs increases from 6 to 96.

Table 3. Breakdown of the total execution time of Gorila and RL4GO with diferent mini-batch sizes (�) on diferent numbers

of GPUs (from 6 to 96 GPUs).

Number of GPUs

6 GPUs 12 GPUs 24 GPUs 48 GPUs 96 GPUs

Gorila (with mini-batch B = 96)

Agent time 5529.29 1964.55 918.88 519.2 332.49

Env. time 2813.13 2033.48 1953.32 1999.15 1973.07

Total time 8570.12 4002.35 3301.98 2552.16 2338.09

RL4GO (with mini-batch B = 96)

Agent time 5964.99 3191.44 1005.49 551.01 365.28

Env. time 312.81 206.82 83.32 79.24 95.92

Total time 6279.34 3399.75 1090.41 633.12 468.17

RL4GO (with mini-batch B = 16)

Agent time 962.53 525.71 168.7 97.75 66.67

Env. time 325.3 205.97 85.88 76.6 91.97

Total time 1288.93 732.21 255.38 176.5 168.36

RL4GO (with mini-batch B = 4)

Agent time 274.93 146.29 48.56 29.9 26.37

Env. time 314.43 179.19 82.02 74.85 96.82

Total time 590.43 326.57 132.34 109.96 131.23
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The third analysis is to study the efect of reducing the mini-batch size � in RL4GO. Notice that RL4GO does
not require that the mini-batch size � be at least equal to the number of GPUs. When � is decreased by � times,
the number of loating-point operations per training-step will reduce by � times. As shown in Table 3, when �
changes from 96 to 16, RL4GO cuts the agent time by 6.2 times on six GPUs. Since the mini-batch size does not
afect the RL environment time, the environment time of RL4GO stays the same. When the number of GPUs is 12,
24, 48, and 96 GPUs, RL4GO can cut its agent time by 6.0, 6.0, 5.6, and 5.5 times, respectively. In the same way,
when we change � from 16 to 4, the agent time of RL4GO decreases by another four times. Eventually, by using
96 GPUs, RL4GO (�=4) is 18 times faster than Gorila (�=96).

Discussion: From the above detailed analysis, we can see that Gorila and its used data-parallelism method can
speed up the agent time in a scalable way. But as the number of GPUs increases, its mini-batch size � needs to
increase accordingly. This results in an increasing time complexity for Gorila’s agent training step. Diferently,
RL4GO can avoid this problem by using a smaller �. Another problem is that Gorila and its data-parallelismmethod
only allows for sequential RL environments. By contrast, RL4GO can utilize spatial parallelism to parallelize both
its RL environment and RL agent to reduce the total execution time.

7.4 Improvement by Using the Multiple-node Selection Strategy

In the third type of experiments, we use the adaptive multiple-node selection optimization method (introduced in
Section 5.2) to improve the RL4GO inference time. The experiments are conducted with test graphs of diferent
sizes on 6 GPUs.
Fig. 6.a shows the comparison between the original RL inference algorithm and the multiple-node selection

algorithm on ER graphs. Given test graphs with 450 nodes, the original inference algorithm takes 7.9s while
the new algorithm takes 2.7s (i.e., 2.9 times faster). The quality of the solutions from MVC���� to MVC���������

remains the same ratio, |������������ |

|������� |
= 1.00. When the test graph size increases to 3,600 nodes, the original

algorithm takes 265.6s and the new algorithm takes 65.5s (i.e., 4.1 times faster). Their solutions again have a
ratio of 1.00. When the test graphs have 7,200 nodes, the new algorithm is 3.9 times faster than the original RL
inference algorithm (2473.1 versus 631.4s).

Similarly, in Fig. 6.b, we present the performance improvements on BA graphs by using the proposed optimiza-
tion method. When BA graphs have 14,400 nodes, the new RL inference algorithm is 3.6 times faster than the
original RL inference algorithm, while maintaining a solution ratio of 1.00.

7.5 Scalability of RL4GO

In the last type of experiments, we measure the scalability of RL4GO on distributed GPUs. In particular, we
conduct strong scalability experiments, in which an increasing number of GPUs are used to solve a ixed-size
problem. For all our experiments, we have veriied that the numerical result computed by multiple GPUs is the
same as that computed by one GPU.

We use the execution time per inference_step or training_step to measure performance, which is called łinference
or training time-per-stepž, respectively. For RL inference, its time-per-step includes the time to evaluate the agent’s
policy model, select a node to be a partial solution, and update the graph state. For RL training, its time-per-step
includes the time to: 1) explore or exploit, 2) update the graph state, 3) convert a mini-batch of experience tuples
to 3D sparse/dense tensors, and 4) train the policy model using the converted 3D tensors. Fig. 7 shows both
training and inference time-per-step of RL4GO from 6 to 192 GPUs. We use the solid lines to represent training
time-per-step, and dashed lines to represent inference time-per-step.
In Fig. 7.a, we show the RL training time-per-step and inference time-per-step (shown as solid and dashed

lines), for ER graphs with 24,000 nodes and 19,200 nodes (shown in red and blue colors), respectively. We irst look
at the RL training time, which are the two solid lines. For ER graphs with 19,200 nodes, the training time-per-step
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Fig. 6. Improvement of RL4GO inference time by using the multiple-node selection technique on ER graphs (a) and BA

graphs (b).

reduces from 96.9s to 3.2s from 6 to 192 GPUs, which is 31.3 times faster. For larger graphs with 24,000 nodes
(with 43 million edges), the training time-per-step reduces from 151s to 4.7s, achieving a speedup of 32.1 times.

With respect to the RL inference time, it is shown as two dashed lines in Fig. 7.a: the red one for ER graphs
with 24,000 nodes and the blue one for ER graphs with 19,200 nodes. We can see that for ER graphs with 19,200
nodes, the inference time-per-step improves from 10.9s to 0.2s as the number of GPUs increases from 6 to 192.
Then, for larger ER graphs with 24,000 nodes, the inference time-per-step improves from 19.2s to 0.4s accordingly
from 6 to 192 GPUs.

Fig. 7.b shows the strong scalability experiments for the real-world graphs of Berkeley & Stanford, Amazon, and
Twitter. First of all, with the Berkeley & Stanford graph, the RL4GO training and inference time are accelerated by
16.1 and 26 times from 1 to 24 GPUs, respectively. The speedup of RL inference is bigger than that of RL training
because RL inference has a higher proportion of super-linear environment operations than RL training. Second,
with the Amazon graph, the RL4GO training-time is reduced by 16.3 times and inference-time is reduced by 23.5
times when going from 1 to 24 GPUs. For the third graph of Twitter, we obtain an 8 times speedup in RL4GO
training, and 25.6 times in RL4GO inference. In most experiments (except for training with Twitter), RL4GO has
achieved signiicant speedups, providing an average speedup of 16 times in parallel RL training, and a speedup of
24 times in parallel RL inference.

8 CONCLUSION

We presented a high performance parallel reinforcement-learning framework with a generic programming
interface to solve large-scale graph optimization problems on distributed many GPUs. Besides introducing the
new RL4GO framework with the new computing kernels and parallel algorithms, we also designed two efective
techniques to further optimize RL performance. Our theoretical parallel eiciency analysis and memory cost
analysis proved RL4GO is eicient and scalable on a large number of GPUs. When applied to large-scale graphs
with over 43 million edges, RL4GO reduced the inference and training time signiicantly with 192 GPUs. Moreover,
the comparison between Google’s Gorila reinforcement learning system and RL4GO showed that RL4GO can
outperform Gorila by up to 18 times.
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