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ABSTRACT

Implementing parallel software for QR factorizations to achieve scalable performance
on massively parallel manycore systems requires a comprehensive design that includes

algorithm redesign, efficient runtime systems, synchronization and communication re-

duction, and analytical performance modeling. This paper presents a piece of tiled
communication-avoiding QR factorization software that is able to scale efficiently for

matrices with general dimensions. We design a tiled communication-avoiding QR fac-

torization algorithm and implement it with a fully distributed dynamic scheduling run-
time system to minimize both synchronization and communication. The whole class of
communication-avoiding QR factorization algorithms uses an important parameter of D

(i.e., the number of domains), whose best solution is still unknown so far and requires
manual tuning and empirical searching to find it. To that end, we introduce a simpli-

fied analytical performance model to determine an optimal number of domains D∗. The

experimental results show that our new parallel implementation is faster than a state-
of-the-art multicore-based numerical library by up to 30%, and faster than ScaLAPACK
by up to 30 times with thousands of CPU cores. Furthermore, using the new analytical
model to predict an optimal number of domains is as competitive as exhaustive searching,
and exhibits an average performance difference of 1%.

Keywords: High performance computing; numerical libraries; analytical performance
modeling

1. Introduction

QR factorization has been offered by a variety of numerical libraries because it

can be used to not only solve scientific and engineering problems such as linear
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systems and least-squares problems, but also solve big data analytics problems such

as linear regression problems, low-rank factorization data analysis, and production

function modeling, as well as assessing the conditioning of these problems [1–3].

QR factorization of an m × n matrix A takes the form of A = QR, where Q

is an m × m orthogonal matrix, and R (=QTA) is an upper triangular matrix

with zeros below its diagonal. Since QR factorization is a fundamental kernel for

many important scientific, engineering, and big data analytics applications, a more

scalable QR factorization library will accelerate a wide range of domain applications.

Today’s most widely used parallel algorithm to solve QR factorizations is the

block QR factorization algorithm adopted by LAPACK [4] and ScaLAPACK [5,6], as

illustrated in Figure 1. Matrix A is divided into a thin panel (i.e., A11

A21
) of dimension

M×NB, a block of rows A12, and a trailing submatrix A22. The block algorithm first

applies level 1 PBLAS subroutines to the panel (A11

A21
), next it forms the triangular

factor from the panel, finally it uses level 3 PBLAS to factor A12 and update A22.

However, the block algorithm does not scale well for tall and skinny matrices (i.e.,

matrices whose number of rows is much bigger than the number of columns).
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Fig. 1. The classic block QR factor-

ization algorithm.
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Fig. 2. Communication-Avoiding QR
(CAQR) performs level 3 BLAS on the

panel (i.e., A0, A1, A2, A3) followed by

a parallel reduction.

To improve the library’s performance to solve tall and skinny matrices, James

Demmel et al. designed the Communication-Avoiding QR factorization (CAQR)

algorithm [7–9]. As explained in Figure 2, CAQR computes a set of faster level 3

BLAS operations, instead of computing a sequence of slow column-by-column level

1 BLAS operations in the panel as used by ScaLAPACK. Then it merges the output

of the level 3 BLAS operations to get the final factor R. Not only does the algorithm

convert level 1 BLAS to level 3 BLAS, but also it significantly reduces the number

of communication messages.

However, generally there may be many different approaches to implementing a

theoretical algorithm. In this paper, we design and develop a distributed-memory

tiled CAQR algorithm that aims to reduce not only communication but also syn-

chronizations. Our previous work [10] provided its first implementation but only

performed well on tall and skinny matrices. This paper will extend the work, and

provide a complete solution. Basically, distributed tiled CAQR factorization can be

regarded as a combination of CAQR and tiled QR factorization. We describe the

idea briefly here. Suppose an m × n matrix consists of mb × nb tiles, and b is the
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tile size for which mb = m
b and nb = n

b , our algorithm partitions m rows into D

blocks or groups: A = [A1;A2; . . . ;AD], where Ai is of dimension m
D ×n and is called

“domain i.” A tile-represented matrix A that is divided into D horizontal domains

can be expressed as follows:

A =
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where Ai,j is a tile of size b×b. At the beginning, all the domains start to execute the

tiled QR factorization on the first panel and the associated updates concurrently.

There is no data dependency between different domains. After the tiled QR factor-

ization within each domain is finished, each domain d gets a b× b upper triangular

factor R̂d located at A(d−1)×mb
D +1,1. Next, CAQR factorization performs a reduction

among all the R̂d’s, where d ∈ {1, . . . , D}. The output of the reduction is the final

factor of R1,1. Then the final R1,1 will be applied to the first row {A1,2, . . . , A1,nb
}

to compute the final result of {R1,2, . . . , R1,nb
}.

We have implemented a library called “scalable universal communication-

avoiding QR factorization” (suCAQR) to support the distributed tiled CAQR algo-

rithm. This library implementation has the advantages of being simple (e.g., a sim-

plified design), generic (e.g., suitable for matrices of any shapes), and scalable. The

suCAQR implementation uses the following optimizations for all matrix shapes: (1)

suCAQR uses a communication-avoiding algorithm to the logical cyclic distribution

to achieve load balancing while using a tiled algorithm to the physical contigu-

ous distribution to minimize communications; (2) suCAQR uses a fully distributed

dynamic scheduling runtime system to support efficient synchronization-reducing

executions and communication hiding; (3) The new software design maintains a

good tradeoff between the degree of parallelism and the number of fastest kernels

for matrices of different shapes by using an appropriate number of domains; And

(4) the software introduces an analytical performance model to automatically de-

termine an optimal number of domains without any searching or empirical tuning.

2. Related Work

Morven Gentleman introduced for sparse matrices [11] the approach of splitting

a matrix into submatrices allowing the reduction to be done independently and

recursively for the submatrices. Then, Pothen and Raghavan [12] developed the idea

of parallelizing the factorization of a panel by implementing distributed orthogonal

factorizations using Householder and Givens algorithms. Their approach divides the
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columns into P subcolumns (where P is the number of processors) and performs

factorizations locally from which the final triangular factors are merged. Based on

Pothen and Raghavan’s work, Demmel et al. [7] proposed a class of algorithms using

parallel panel factorizations, which are named communication-avoiding algorithms.

Later on, more communication-avoiding algorithms have been designed and de-

veloped for a variety of applications. Yelick et al. developed a shared-memory com-

munication avoiding GMRES solver [13]. Khabou et al. designed a communication

avoiding LU factorization version with panel rank revealing pivoting [14]. Our pre-

vious work designed a distributed-memory CAQR for multicore cluster systems [10],

but it did not scale well on square matrices. In this work, we design and implement

a new parallel suCAQR library to support matrices of any shapes, and augment

it with an analytical model. DPLASMA [15] has implemented a CAQR algorithm,

but it is built on a different runtime system and requires more parameter tuning

efforts than our implementation. For instance, suCAQR does not require empirical

tuning of an optimal tree and searching for an optimal number of domains, thanks

to a simplified algorithm design and an embedded analytical performance model.

3. The Parallel suCAQR Algorithm

This section introduces the data structure we use to store the matrix, and the

algorithm design and pseudocode of suCAQR.

Given a matrix, we divide it into square blocks (also known as tiles). Each

tile is stored in a contiguous memory block. For an input matrix with mb × nb

tiles, suCAQR allocates a 2-D mb × nb array of pointers, each of which points to a

contiguous memory block that stores a single tile.

In our task parallelism implementation, every computational task takes as input

several individual tiles (i.e., the basic unit) and computes new output.

Before the real computation starts, the input matrix is distributed across dif-

ferent processes in a static way. Also, we choose to use the simple block cyclic

distribution method in our implementation.

3.1. Computation Tasks in the Algorithm

Assuming a matrix has mb × nb tiles, the algorithm will execute nb iterations (as

shown in Algorithm 1). In each iteration, there are two phases of computations:

1) Every process performs a local factorization independently; Then 2) Processes

perform a parallel reduction to merge partial results computed by Phase 1 to get

the final result. Details of the two phases are described as follows.

Phase 1: In the first phase (lines 3–9 in Algorithm 1), every process computes

its beginning row that has not gotten the final result in the local data layout (i.e.,

a number of tile rows stored locally). Next, each process computes a local CAQR

factorization on its local matrix, which spans from the beginning row to the last

local row. The two subroutines used by Phase 1 are introduced as follows:
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Algorithm 1 Parallel suCAQR Algorithm
1: suCAQR(A, mb, nb, P, D)
2: for each tile column k ← 0 to nb-1 do

3: . Phase 1: local CAQR factorization in each process
4: for each process pid ← 0 to P-1 do

5: phys 1st row ← get first row position(k, B, P, pid);

6: if (phys 1st row < bmb/P c) then
7: local caqr(A,phys 1st row, k, B, mb,nb,P,pid,D);

8: end if

9: end for
10: . Phase 2: binary-tree merge among processes

11: root pid ← bk/Bc % P;

12: num active procs ← d(mb − k)/Be;
13: if (num active procs ≥ P) then

14: num active procs ← P;
15: end if

16: for (hgt ← 1 to dlog2 num active procse) do

17: d1 ← 0; d2 ← 0+2hgt−1;

18: while (d2 < num active procs) do

19: p1 ← (d1+root pid)%P;

20: p2 ← (d2+root pid)%P;
21: i1 ← get first row position(k, B, P, p1);

22: i2 ← get first row position(k, B, P, p2);

23: merge two rows(A, i1, i2, p1, p2, k, B ,nb, P);

24: d1+=2hgt; d2+=2hgt;

25: end while
26: end for

27: end for

• get first row position: This function tries to find the current process’s first

row location in the process’s local data layout. Given a column index k,

it first decides which process the tile [k, k] belongs (this special process

is deemed the root process). Based on the relative position of the current

process to the root process (e.g., above, same, below), the current process’s

first row that has not computed the final result will be decided adaptively

according to the relative positions (i.e., either above, same, or below).

• local caqr (in Algorithm 2): It calls six computational kernels, which are

dgeqrt, dormqr, dtsqrt, dtsssmqr, dttqrt, and dttssmqr. The mathe-

matical details of the kernels can be referred to our previous work [10]. To

make it easier to understand, we use the notations of QR1, UP1 (stands for

update), QR2, UP2, Merge, and MergeUpdate to represent the six kernels

correspondingly. The local CAQR factorization will be applied to the sub-

matrix whose local rows are between phys 1st row and the (mb/P )-th row,

and whose columns are between the k-th column and the nb-th column.

The local submatrix can be partitioned into D domains of rows. The

parameter D is an argument passed to the solver, which can vary from one

to the number of rows per process. Local CAQR first computes a partial

result for each domain, and then summarizes the results by using a local
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Algorithm 2 Local CAQR Factorization
1: local caqr(A, phys 1st row, k, B, mb, nb, P, pid, D)
2: ds ← bmb/P/Dc /*rows per domain*/

3: . step 1: do local factorization for each domain
4: for each domain d ← 0 to D-1 do

5: 1st row ← phys 1st row + d*rows per domain

6: R[1st row,k], V[1st row,k], T[1st row,k]
7: ← dgeqrt (A[1st row,k]);

8: for j ← k+1 to nb-1 do

9: A[1st row,j] ← dormqr

10: (V[1st row,k],T[1st row,k],A[1st row,j]);

11: end for

12: for i ← 1st row+1 to bmb/P c-1 do
13: R[i,k], V[i,k], T[i,k]

14: ← dtsqrt (A[1st row,k],A[i,k]);
15: end for

16: for i ← 1st row+1 to 1st row + bmb/P/Dc - 1 do

17: for j ← k+1 to nb-1 do
18: R[1st row,j], A[i,j] ←
19: dtsssmqr (V[i,k],T[i,k], R[1st row,j],A[i,j]);

20: end for
21: end for

22: end for

23: . step 2: merge results from the D local domains
24: root domain ← bphys 1st row/dsc ;

25: for (hgt ← 1 to dlog2 D − root domaine) do

26: d1 ← root domain; d2 ← d1+2hgt−1;
27: while (d2 < D) do;

28: i1 ← d1 × ds;

29: i2 ← d2 × ds;
30: if (d1 = root domain) then

31: i1 ← phys 1st row;
32: end if

33: merge two rows(A, i1, i2, pid, pid, k, B ,nb, P);

34: d1+=2hgt; d2+=2hgt;

35: end while

36: end for

binary-tree merge. The computations from the D domains can be executed

in an embarrassingly parallel way. Section 5 will introduce how to determine

an optimal number of domains D∗.

Phase 2: In the second phase (lines 10–26 in Algorithm 1), a global binary-tree

reduction computation is conducted by a set of processes in parallel. The algorithm

first decides the root of the parallel reduction tree, which changes dynamically in

a block-cyclic manner. Next, it decides which processes are involved in the trailing

submatrix (lines 12–15). We refer to the involved processes as active processes. Only

the active processes will participate in the global binary-tree reduction, to which

each process contributes one row of tiles. The binary tree is among processes, and

has a height of dlog2(ActiveProcesse)e.
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Algorithm 3 Merge Partial Results from Two Block Rows
merge two rows(A, i1, i2, p1, p2, k, B ,nb, P)
Input: i1 and i2 are the physical row indices

logic i1 ← physical 2 logical(i1, B, P, p1);
logic i2 ← physical 2 logical(i2, B, P, p2);

R[logic i1,k], V[logic i2,k], T[logic i2,k]

← dttqrt (R[logic i1,k],R[logic i2,k]);
for j ← k+1 to nb-1 do;

A[logic i1,j], A[logic i2,j] ← dttssmqr (V[logic i2,k],

T[logic i2,k],A[logic i1,j],A[logic i2,j]);
end for

The subroutine of merge two rows (in Algorithm 3) is responsible for merging

the partial results from two processes. It merges the i1-th row of process p1, and

the i2-th row of process p2 to obtain an intermediate result. merge two rows is

called by both Algorithm 2 as a local operation, and Algorithm 1 as a distributed

operation. A runtime system can detect whether the task is a local operation or a

global operation, and use shared memory or message passing to compute the task

automatically at runtime.

The merge subroutine needs the following physical 2 logical function to translate

a row index, from a physical contiguous data layout to a logical block cyclic data

layout, in order to to find out where a process’s local row is located in a global

logical cyclic view.

int physical 2 logical(i, B, P, pid)

Input: physical row number i, group size B, P processes.

cycle size ← B×P; /*#rows per cycle*/
/*number of logical rows before the i-th physical row*/

begin row ← bi/Bc×cycle size;

return (begin row+pid×B+i%B);

4. A Distributed Scheduling Runtime System

We have implemented the parallel suCAQR algorithm by extending a task schedul-

ing runtime system TBLAS [16]. The TBLAS runtime system can support dis-

tributed dynamic directed acyclic graph (DAG) scheduling on distributed systems

with multicore compute nodes. Given an input matrix, its data is distributed across

different compute nodes (see Figure 3). The corresponding task graph is also im-

plicitly partitioned into different compute nodes. That is, every task has a home

compute node and is executed by any CPU core on the home compute node. From

a high level standpoint, every compute node is executing a runtime system instance

which collaborate with each other to solve the same single problem in parallel. The

data dependency correctness is also guaranteed by following a distributed comput-

ing protocol [17].
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To utilize the TBLAS runtime system, we create six types of tasks: QR1, QR2,

UP1, UP2, Merge, and Merge Update. Each type of task takes multiple tiles as

input and writes new result to the output tiles. To execute the program, we launch

a number of MPI processes on different multicore compute nodes. Every MPI pro-

cess is managed by one instance of TBLAS runtime system. The runtime systems

coordinate with each other to solve data dependencies, dispatch tasks, and send the

output of a parent task to its children tasks which are waiting for their input.

The design of the runtime system running on each multicore compute node is

shown in Figure 4. It consists of three types of threads: task-generation thread, task-

computing thread, and communication thread. The task-generation thread executes

a sequential task-based program and generates fine-grain tasks to fill in a number

of priority-based task queues. Whenever becoming idle, a compute thread picks

up a ready task from the ready task queue and executes it. The communication

thread is responsible for sending and receiving data between a parent task and its

children to satisfy the data dependency requirement. The TBLAS runtime system

does not require constructing a task graph by users in advance or require a new

compiler; instead it can automatically resolve data dependencies at runtime among

all distributed compute nodes.

The new suCAQR tasks are scheduled based on their priorities. In our extended

runtime system, the binary-tree Merge tasks have the highest priority. At iteration

i, the tasks located between the i-th column and the (i+d)-th column have the

second highest priority given a lookahead depth of d. The remaining tasks have a

regular priority. Also, all the suCAQR tasks’ input and output tiles are indexed by

a logical layout to facilitate solving data dependencies. When executing the task,

its input/output tiles will be converted to the local data layout to read/write data.

When the task-based suCAQR program is being executed, the frontier of the

Distributed-Memory System

Node

CPU core

Node Node

NodeNodeNode

...

...

Both matrices and DAG 
are partitioned to nodes

entry task

exit task

Fig. 3. A high level view of the

distributed suCAQR software.

...      task window: 

... ready task queue: 

Task-generation 
thread 

... Computing thread Computing thread Computing thread 

Network 

outbox 

inbox 
Communication 
thread 

Fig. 4. The runtime system on each compute node.
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DAG is unrolled dynamically by the runtime system. The size of the active frontier

is controlled by a task window size. Each runtime system has its own execution point,

which follows the data-availability path to reach a different place in the DAG.

Figure 5 shows an example of the DAG for a suCAQR execution, where three

processes execute from the left to the right, and communicate with each other for

very few times only when necessary. Also, there are no global synchronizations.

QR1

UP1

UP2

QR2

Merge

Merge 
Update

P0:

P1:

P2:

Fig. 5. A DAG execution for the parallel suCAQR algorithm using 3 processes.

5. Analytical Model to Determine an Optimal Number of Domains

As listed in Algorithm 2, each process requires a number of D domains of data to

compute. However, D could be any number between one and mb

P , where D = mb

P

means that every block row is a domain. The problem we target is how to decide an

optimal number of domains directly without trying all the possibilities of D. This

section introduces an analytical model to determine an optimal number of domains.

5.1. Effect of Domains, Our Observations, and Analysis

We reveal that the number of domains has a significant impact on the overall pro-

gram performance. For instance, in Figure 7. (a), a different value of D leads to

distinct performance on the same input size (e.g., 128 block rows and an increasing

number of block columns). Each line in the figure represents the performance a

specific D, where D is between one and 32. As an example, for an input matrix of

size 128 × 8 blocks, D = 1 is 230% slower than D = 8 on 64 CPU cores. Hence,

determining an optimal number of domains is critical to program performance.

In order to search for an optimal number of domains, we analyze the algorithm

and give the following insights into the problem:

(1) Within each domain, the degree of task parallelism is decided by the number of

block columns assuming a matrix has mb × nb blocks. That is, there are nb − k

parallel tasks in the k-th iteration. Note that there is no parallelism between

different block rows that belong to the same domain.

(2) When nb is much larger than the number of threads per process (e.g., T threads),

using one domain will achieve the minimum number of operations and maximum
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Fig. 6. An increasing number of floating point operations as the number of domains increases.

#flops are measured by PAPI counters.

number of higher-performance UP2 tasks, hence leading to the best performance.

We used PAPI to measure the total number of floating point operations when we

increase the number of domains. The PAPI measurement of number of floating

point operations (#flops) is shown in Figure 6. As D increases from one to 32,

the number of flops increases accordingly. This result empirically proves that a

larger D increases the number of operations.

(3) When D is increased, the degree of task parallelism within each process will

be increased by D times correspondingly because all the D domains can be

executed in parallel. However, when D increases too much, the number of the

fastest UP2 tasks will decrease (replaced by the slower Merge and MergeUpdate

tasks) and the number of operations will increase, so that the overall perfor-

mance starts to drop instead. Therefore, we have to find a good tradeoff to

choose between a large D and a small D.

5.2. The Analytical Performance Model

Based on the above analysis, we build a new analytical performance model to de-

termine the optimal number of domains.

First, it is important to have more tasks than the number of CPU cores at any

time on manycore systems. Otherwise, CPU cores will become idle due to the lack

of tasks to compute.

Hence, to achieve high performance, we require the degree of task parallelism

within a multi-threaded process must be greater than the number of threads per

process (T ) to make fully use of all CPU cores. We use one process per compute

node. Assuming a process has nb block columns and D domains, the process can have

up to nb×D independent tasks. This desired condition of sufficient task parallelism

degree can be expressed as follows:

(degreeparallel = nb ×D) ≥ c× T =⇒ D ≥ dc× T

nb
e

In the above formula, c is a simple coefficient and is set to 4 based on our collected

performance data. The formula has a special boundary case: when nb = c × T , D
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will always satisfy the condition of sufficient task parallelism degree because D is

at least equal to 1. In other words, as long as nb ≥ c × T , using one domain can

satisfy the condition and produce the best performance, regardless of the matrix

shape being skinny or square.

On the other hand, nb may become smaller and smaller and eventually D = 1

cannot satisfy the condition. In such a situation, we need to make D bigger and

bigger to compensate for the diminishing degree of task parallelism. However, if

nb is too small (e.g., only 2 or 3 columns), we require D = T to let T threads

compute T domains in an embarrassingly parallel way. The reason we do not make

D > T is the following. Aggressively creating unnecessarily more domains than

the number of threads per process will slow down the performance due to: 1) an

increased number of floating point operations; 2) lesser fast UP2 tasks; and 3) an

increase in the working set from more irregular cross-domain merges.

Our final analytical model is defined as follows:

D∗ =


d c×Tnb

e if nb ≥ c

min{T, mb

P } if nb < c,where c=4.

Next, we performed two experiments to verify the analytical model. Figure 7.a

shows the actual performance using different numbers of domains. Each D has a

distinct line. Also, there is a special line showing the performance of using the

predicted D∗ derived from the analytical model. We execute 4 processes and each

process consists of 16 threads. The input matrix size goes from 128 × 1 blocks to

128×128 blocks. For each matrix, we use all possible numbers of domains and collect

their performance. From the data, we can see that the model-based prediction (D∗)

closely matches the actual best number of domains among all possibilities. Note

that the line of D∗ is directly calculated using the analytical model.
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(a) All input matrices have 128 block rows
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Fig. 7. Use an analytical model to predict an optimal number of domains D∗. The model-
predicted D∗ is compared to all different possible D.
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In the second experiment, we take the same matrix size of 128× 16 blocks but

change the number of threads per process from one to 32. As shown in Figure 7.b, the

model-based prediction again coincides with the actual best number of domains. We

also did a set of large-scale experiments to verify the analytical model’s predictions.

The large-scale experimental results are presented in the next Section 6.

6. Experimental Results

In this section, we compare suCAQR with ScaLAPACK and DPLASMA [15] on

two different HPC systems. ScaLAPACK is a de facto standard MPI-based linear

algebra library for distributed memory systems, and DPLASMA is a newer linear

algebra library for distributed multicore systems. We conduct experiments on the

Big Red II Cray XE6/XK7 supercomputer [18] at Indiana University, and the Comet

supercomputer at San Diego Supercomputing Center [19]. On Big Red II, each

compute node has 32 CPU cores and 64 GB of memory, and runs a Cray Linux OS.

On Comet, each compute node has 24 CPU cores and 128 GB of memory, and is

connected with an Infiniband network.

6.1. Performance Evaluation

We conduct experiments to measure the weak scalability performance of different

libraries. In the experiments, whenever we double the number of CPU cores, we

also double the total amount of computation accordingly. The number of matrix

elements per CPU core is kept as a constant in each experiment. Weak scalability is

often used to measure a program’s capability to solve larger problems when a user

has access to more computing resources.

On Big Red II: Figure 8 shows the measured performance of Gflops Per Core on

Big Red II using 1 to 1,024 CPU cores. There are three subfigures. They correspond

to three different matrix shapes, ranging from extremely tall&skinny matrices, ma-

trices whose rows are four times as many as columns, to square matrices. Overall

from the three subfigures, we can see that suCAQR provide better performance than

DPLASMA. In particular, in subfigure a, suCAQR is 15% faster than DPLASMA

on 1,024 cores. In subfigure b, suCAQR is 30% faster than DPLASMA on 1,024

cores. And in subfigure c, when the matrix is square, suCAQR is 11% faster. In

comparison with ScaLAPACK, the suCAQR program is 30 times and 30% faster,

as shown in subfigures a and b, respectively. However, ScaLAPACK provides the

best performance — suCAQR is comparable to it — when solving square matrices

as displayed in subfigure c.

On Comet: We did weak scalability experiments using up to 1,536 CPU cores on

the Comet system. Figure 9.a shows that suCAQR is faster than DPLASMA by up

to 25% from 1 to 12 cores; then becomes similar to DPLASMA after 24 cores. The

performance drop from 12 to 24 cores is due to the fact that each Comet compute

node has two 12-core sockets and two NUMA memory nodes, and the slow NUMA

memory accesses decrease the overall performance. From Figure 9.b, we can see
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Fig. 8. Experiments of weak scalability on Big Red II.

that suCAQR is faster than DPLASMA by up to 32% from 1 to 24 cores, then

continues to be faster than DPLASMA by up to 26% from 48 to 1536 cores. In

Figure 9.c, suCAQR outperforms both DPLASMA and ScaLAPACK. But none of

them can attain a constant Gflops-per-core performance. We believe the reason is

related to the characteristics of computer system balance. That is, Comet’s compute

node is twice faster than BigRedII’s compute node, but its network performance is

relatively less than Cray’s Gemini interconnect so that the communication time is

hard to hide and dominates the total execution time.
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Fig. 9. Experiments of weak scalability on Comet.

6.2. Evaluation of Analytical Modeling: Strong Scalability

We run large scale experiments to verify whether our analytical model can find

the best number of domains or not. For the experiments, we compare the model

predicted optimal number of domains (i.e., D∗) to the empirically searched best

number of domains (i.e., D∗′).

We first use a set of strong scalability experiments to verify the analytical model.

The next section will use a set of weak scalability experiments to verify the model.

Table 1 shows the performance differences between using the predicted D∗ and the

empirically searched D∗′ on Big Red II. As shown in the table, there are four groups

of experiments with distinct matrix shapes: 1) extremely tall and skinny matrices,

2) matrices whose rows are 16 times as many as columns, 3) matrices whose rows

are 4 times are many as columns, and 4) square matrices.

For each matrix input, we use different numbers of CPU cores from 1 to 512.

Provided with n cores, we display both the predicted D∗ and the searched best
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Table 1. Analytical modeling for strong scalability experiments on BigRedII.
extremely tall and skinny #columns

#rows = 1
16

#Cores D* D*′ perf of D* perf of D*′ D* D*′ perf of D* perf of D*
1 1 1 10.4 Gflops 10.4 Gflops 1 1 12 12
2 2 1 12.1 12.9 1 1 14.6 14.6
4 4 2 23.9 24 1 1 27.4 27.4
8 8 16 44.2 44.3 2 1 50.4 51.2
16 16 16 88.4 88.4 4 1 99.4 101.4
32 16 16 158.6 158.6 4 8 189.4 190.6
64 16 16 322.3 322.3 4 4 377.1 377.1
128 16 16 623.9 623.9 4 4 716 716
256 16 16 1257.9 1257.9 3 3 1423.9 1423.9
512 16 16 2316.7 2316.7 3 3 2606.9 2606.9

#columns
#rows = 1

4 square

1 1 1 12.1 12.1 1 1 12.2 12.2
2 1 1 14.7 14.7 1 1 14.8 14.8
4 1 1 27.7 27.7 1 1 27.9 27.9
8 1 1 51.6 51.6 1 1 52 52
16 2 1 99.1 102.5 1 1 102.8 102.8
32 2 2 188.8 188.8 1 1 195.2 195.2
64 2 2 374.7 374.7 1 2 373 377.3
128 1 1 699.6 699.6 1 1 727.7 727.7
256 2 2 1438 1438 1 1 1354.7 1354.7
512 2 2 2448 2448 1 1 2223.7 2223.7

D∗′ as well as their corresponding performances. From Table 1, we can see that the

model-predicted D∗ is equal to the empirically searched D∗′ in totally 32 out of 40

different experiments. Even for the rest of the experiments (i.e., 8 out of 40), the

predicted D* is still close to the empirically searched best D*′, and the maximum

performance difference (in terms of Gflops) is 6%.

6.3. Evaluation of Analytical Modeling: Weak Scalability

We also verify the model using a set of weak scalability experiments. Similarly, we

compare the predicted number of domains (D∗) to the empirically searched number

of domains (D∗′).

Table 2 lists the results on Big Red II using four different matrix shapes from

extremely tall and skinny matrices to square matrices. Based on the table, we find

that the predicted D∗ is the same as the empirically searched best D∗′ in 29 out

of 44 cases. Among the rest of the 15 cases, the worst performance loss occurs

when running the 256-core experiment with the matrix shape of 1
16 , in which D∗=1

differs from D∗′=2, affecting the performance by 3.9%. Although not identical, the

predicted D∗ is still comparable to the searched best number. As a result, the

performance of using D∗ is almost the same as that using the empirical best D∗′.

On average, the overall performance difference among all the 44 test cases is 0.7%.

7. Conclusion

We target the distributed-memory multicore computer architecture and provide a

simple, efficient, and scalable parallel implementation to compute QR factorizations

for various matrix shapes. The parallel suCAQR library we have developed uses
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Table 2. Analytical modeling for weak scalability experiments on BigRedII.
extremely tall and skinny #columns

#rows = 1
16

#Cores D* D*′ perf of D* perf of D*′ D* D*′ perf of D* perf of D*
1 1 1 10.4Glops 10.4Gflops 1 1 10.3 10.3
2 2 2 12.7 12.7 2 1 12.8 13.2
4 4 8 23.2 23.7 2 1 25.3 26
8 8 8 44.1 44.1 4 4 47.1 47.1
16 16 16 87.3 87.3 4 4 94.7 94.7
32 16 32 165 167 4 4 186 186
64 16 16 324 324 2 4 366 377
128 16 16 641 641 2 4 743.5 753.4
256 16 32 1259 1267.8 1 2 1461.1 1518.4
512 16 16 2490.1 2490.1 1 2 2963.2 3027.1
1024 16 32 4898 4907 1 2 6048.4 6071.1

#columns
#rows = 1

4 square

1 1 1 11 11 1 1 10.8 10.8
2 1 1 13.9 13.9 1 1 14 14
4 2 1 26 26.6 1 1 26.6 26.6
8 2 1 49.2 50.6 1 1 50.7 50.7
16 4 2 97.5 100.6 1 1 100.4 100.4
32 2 2 189.7 189.7 1 1 190.3 190.3
64 2 2 376.3 376.3 1 1 374.1 374.1
128 1 2 743.6 756.4 1 1 737.3 737.3
256 1 1 1506.6 1506.6 1 1 1403.9 1403.9
512 1 1 2997 2997 1 1 2729.3 2729.3
1024 1 1 5945.2 5945.2 1 1 4765 4765

a logical data layout on which a dynamic-root parallel tree reduction method is

deployed. It also leverages the architectural strength of a cluster of multicore nodes.

That is, within each multicore node, a shared-memory tiled QR is carried out on

the local matrix data from the first row to the last row of the local matrix, where

the front line of the data flow (where it shows a “domino effect”) keeps all the cores

busy. Between different compute nodes, a binary-tree reduction is conducted among

all P processes in parallel. Such a simple design simplifies our algorithm design and

library implementation.

We build a new analytical model to determine the important factor of the num-

ber of domains without any searching. From the perspective of the software design,

we have designed a distributed dynamic scheduling runtime system, and realized

a synchronization-reducing version of the tiled QR factorization algorithm. The

experimental results have shown that suCAQR can perform better than the state-

of-the-art libraries with different matrices using up to 1,536 cores on two distinct

HPC systems. Since the task-based dynamic parallelism approach is particularly

effective in avoiding CPU idle cycles and hiding expensive communications, our fu-

ture work will generalize and extend it to other domains such as large-scale graphs,

computational fluid dynamics, and machine learning.
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