
Designing a Synchronization-reducing Clustering Method on
Manycores: Some Issues and Improvements

Weijian Zheng
Department of Computer Science

Indiana University-Purdue University
Indianapolis, Indiana
wz26@iupui.edu

Fengguang Song
Department of Computer Science

Indiana University-Purdue University
Indianapolis, Indiana
fgsong@iupui.edu

Lan Lin
Department of Computer Science

Ball State University
Muncie, Indiana
llin4@bsu.edu

ABSTRACT
The k-means clustering method is one of the most widely used tech-
niques in big data analytics. In this paper, we explore the ideas of
software blocking, asynchronous local optimizations, and heuristics
of simulated annealing to improve the performance of k-means clus-
tering. Like most of the machine learning methods, the performance
of k-means clustering relies on two main factors: the computing
speed (per iteration), and the convergence rate. A straightforward
realization of the software-blocking synchronization-reducing clus-
tering algorithm, however, sees sporadic slower convergence rate
than the standard k-means algorithm. To tackle the issues, we
design an annealing-enhanced algorithm, which introduces the
heuristics of stop conditions and annealing steps to provide as good
or better performance than the standard k-means algorithm. This
new enhanced k-means clustering algorithm is able to offer the
same clustering quality as the standard k-means. Experiments with
real-world datasets show that the new parallel implementation is
faster than the open source HPC library of Parallel K-Means Data
Clustering (e.g., 19% faster on relatively large datasets with 32 CPU
cores, and 11% faster on a large dataset with 1,024 CPU cores).
Moreover, the extent to which the program performance improves
is largely determined by the actual convergence rate of applying
the algorithm to different datasets.
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1 INTRODUCTION
Machine learning has gained a lot of attentions and achieved mo-
mentous results in both industry and academia. A main driving
force behind this success is the wider deployment of high perfor-
mance computing (HPC) systems and the high demands of big data
analytics. Given the exponential growth rate of data generation at
extreme scales, it is critical to summarize big data succinctly and
approximately to discover new knowledge.

One of the most important computational data summarization
methods is clustering [11]. To date, clustering has been used in many
scientific, engineering, and industrial applications. In a clustering
method, each data item is viewed as a point in a multidimensional
space. Data points that are “close” in this space will be assigned
to the same cluster. Clustering methods are divided into two cat-
egories: hierarchical and partitional algorithms. Hierarchical clus-
tering algorithms generate a dendrogram to represent the nested
grouping of data points in a hierarchy. Differently, partitional clus-
tering algorithms generate a single partition for all data points.
Since generating a dendrogram is time-consuming for large-scale
data volumes, partitional clustering is often used in practice. In this
work, we target designing a new partitional clustering algorithm,
named a tiled synchronization-reducing k-means clustering algo-
rithm. It builds on the widely used software blocking technique [13]
and the successes of applying synchronization-reducing algorithms
to classic computation-intensive HPC applications [2, 3, 15, 22].

The standard k-means clustering algorithm [9] works as follows:
1) Randomly choose k points among all the data points as the initial
centers; 2) assign each data point to its closest center; 3) update
the k centers according to the changed datapoint membership; and
4) check if the convergence condition is met, if not, repeat 2) and
3). In this work, we use the standard Sum of Squared Error (SSE)
metric to test clustering algorithms’s exit condition and measure
the quality of the clustering result.

There are several issues to design a scalable clustering algorithm
for massively parallel systems. First, the global synchronizations
between all points at every iteration will affect an algorithm’s
scalability when considering extreme-scale systems with a large
number of CPUs and cloud systems with relatively slow commu-
nication networks. This inspires us to design a synchronization-
reducing algorithm to decrease global synchronizations. Second,
visiting all the data points at every iteration will result in a poor data
locality and more data movements between slow memory and fast
caches. Hence, we use software blocking to improve the program’s
data locality. These two modifications have led to our new tiled
synchronization-reducing clustering algorithm. However, this algo-
rithm does not work directly since its convergence rate sometimes
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becomes slower than that of the standard k-means clustering. Third,
new heuristics are hence needed to make the algorithm converge
in the same or better rate than the standard k-means meanwhile
computing the same SSE cost.

We first design a sequential version of the tiled synchronization-
reducing algorithm. The sequential algorithm divides the input into
a number of data blocks (also known as tiles). Each block will be
processed by a local optimization algorithm repeatedly until the
specific block finds a local optimal clustering result. After each
block has independently found its own best clustering, their lo-
cal centers will be reduced (or merged) to form the global centers.
In addition, we extend the algorithm with a heuristic to attain a
better convergence rate. The heuristic is motivated by the idea of
simulated annealing but does not use simulated annealing’s expen-
sive neighborhood searches. This new heuristic enables a so-called
“annealing-enhanced tiled synchronization-reducing algorithm”,
which can be faster than the k-means clustering algorithm. The
annealing-enhanced algorithm is essentially an adaptive method. If
the number of annealing steps is large, the algorithm becomes the k-
means clustering algorithm; if the number of annealing steps equals
one, it becomes the tiled synchronization-reducing algorithm.

Next, we develop a parallel implementation for the annealing-
enhanced algorithm. The parallel implementation uses a static data
distribution method to allocate an equal number of data blocks to
each thread. The parallel algorithm is designed as follows: 1) Every
thread computes clustering for each assigned block; 2) every thread
derives k centers based on its assigned blocks’ clustering results;
3) all threads on the same compute node will merge their centers
(i.e., node-level); and 4) all compute nodes will merge their centers
(i.e., system-level), which eventually lead to a set of global centers.
These four steps will be repeated until the global SSE cost cannot be
decreased any more. Our paper also discusses different strategies
to merge local centers to global centers and their effectiveness.

We conducted experimentwith four real-world datasets ofMNIST,
CIFAR-10, CIFAR-100, and PLACES-2 for both the sequential al-
gorithm and the parallel algorithm on manycore systems. With
the parallel implementation, we can outperform the MPI-based
k-means library by up to 19% on 32 CPU cores, and 11% on 1,024
CPU cores.

The rest of the paper is organized as follows. Next section intro-
duces the related work. Section 3 presents the tiled synchronization-
reducing algorithm as a sequential algorithm first. Based on the tiled
synchronization-reducing algorithm, an annealing-enhanced algo-
rithm is constructed in Section 4. Section 5 and Section 6 describes
how we realize a parallel implementation on distributed-memory
multicore systems. Section 7 discusses the effects of the algorithm’s
parameters and shows the experimental results. Finally, Section 8
concludes this work.

2 RELATEDWORK
Zhao et al. used the MapReduce programming model to develop
a parallel k-means program [26], but did not achieve optimal per-
formance since the MapReduce model uses expensive disk I/O to
transfer data. Spark [23] provides a machine learning library called
MLlib [18]. However, Spark’s runtime overhead (e.g., task start de-
lay, scheduler delay, inter-stage barrier, and so on) is still significant

compared to the MPI-based libraries, as observed by researchers
from the University of California at Berkeley [8].

On the other hand, there are several HPC-based k-means clus-
tering libraries [5, 16]. They use collective MPI operations at every
iteration to update global centers. Moreover, k-means clustering
methods have also been implemented on Intel MIC (Many Inte-
grated Core) Architecture [24] and Nvidia GPUs [6, 25].

The ideas of synchronization-reducing and lazy synchronizations
have already been applied to a few machine learning algorithms.
For instance, Xing et al. applied the asynchronous communication
approach to a variety of machine learning problems such as topic
models and low-rank matrix factorizations in the context of Param-
eter Server Frameworks [4, 10]. However, k-means clustering is not
studied in their work.

Fatta et al. designed a fault tolerant epidemic clustering algo-
rithm which does not require global communication [7]. However,
their research is focused on handling network failures and does
not provide the same SSE cost as the standard k-means clustering
algorithm.

Simulated annealing algorithms have been developed [17, 19, 21]
to further improve the clustering methods’ quality. They generate
and compare random solutions near the neighborhood to search
for better solutions, but take much longer time than the k-means
clustering method. Differently, we extend the k-means clustering
method to achieve the same SSE cost and faster performance.

Mini-batch k-means [20] is a sampling-based k-means clustering
algorithm. At each iteration, it picks only b sample points to ap-
proximate centers by using projected gradient descent. K-means++
[1] is a method designed to help find a better seed, which is used
as a preprocessing step to improve the accuracy and convergence
rate of the standard k-means clustering method.

3 DESIGN OF A
SYNCHRONIZATION-REDUCING
CLUSTERING ALGORITHM

The new algorithm we design uses a tiled data layout and consists
of two functions: 1) the local optimization function to cluster each
data block, and 2) the merge function to calculate global centers.

A tiled data layout: In a machine learning application, each data
point is composed of n-dimensional attributes such that all data
points may be viewed as a matrix. By using a tiled data layout,
we divide all data points into rectangular tiles. Each tile stores a
consecutive number of data points (i.e., a number of rows in the
matrix). Also, each tile is regarded as an individual unit to which a
local optimization function can be applied as many times as possible
to optimize cache locality and communication cost.

3.1 The Local Optimization Function
The idea of local optimization is to optimistically consider the points
in one data block being representative of the dataset such that the
locally clustered result can approximate the global centers. The
local optimization function guarantees that the SSE cost keeps de-
creasing. The function exits when it cannot reduce the SSE cost any
longer. Hence, a better solution is conveniently obtained without
any overhead of communication and synchronization. However,
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Algorithm 1 The Local Optimization Function
1: /∗ Local optimization on one block ∗/
2: local_optimization_block(points, g_centers,
3: g_centers_size, membership, threshold)
4: ▷ step 1: Use the global centers as a new seed
5: g_centers′← g_centers;
6: g_centers_size′← g_centers_size;
7: for each center c do
8: g_centers_sum′[c]← g_centers[c] * g_centers_size[c];
9: end for
10: blk_cost_new = MAXIMUM;
11: while true do
12: blk_local_sum = 0;
13: blk_local_size = 0;
14: blk_cost_old = blk_cost_new;
15: blk_cost_new = 0;
16: ▷ step 2: Use the local points to improve centers
17: for each point i in points do
18: ▷ step 2.1: find the closest center for each point
19: (dist, new_center)← find_nearest_center
20: (points[i], g_centers′);
21: pre_center = membership[i];
22: ▷ step 2.2: update affected global centers
23: if (pre_center != new_center) then
24: g_centers_size′[new_center] += 1;
25: g_centers_size′[pre_center] -= 1;
26: g_centers_sum′[new_center] += points[i];
27: g_centers_sum′[pre_center] -= points[i];
28: end if
29: membership[i] = new_center;
30: ▷ step 2.3: each block has a partial sum for each center
31: blk_local_sum[new_center] += points[i];
32: blk_local_size[new_center]+=1;
33: blk_cost_new += dist;
34: end for
35: ▷ step 2.4: Recalculate new centers g_center′ */
36: for each center c do
37: g_centers′[c] = g_centers_sum′[c] / g_centers_size′[c];
38: end for
39: ▷ step 3: Check if the optimization should stop
40: if blk_cost_new >= blk_cost_old * threshold then
41: break;
42: end if
43: end while
44: return {blk_local_sum, blk_local_size, blk_cost_new}

it is not trivial to obtain good global centers from a set of local
centers. Sections 3.2 and 6 will discuss how to merge centers.

In Algorithm 1, we display the local optimization function in
three steps:

Step 1: Reset seed to the most updated global centers. Whenever
entering the function, we utilize the current global centers as a
starting point to search for newer and better centers.

Step 2: Improve global centers based on local points. The second
step will do the reassignment for each data point in a data block.
In step 2.1, a point will find its closest global center. In step 2.2,
If the center has changed, the function will update two affected
global centers’ sizes and sums of coordinates. Step 2.3 monitors the

Algorithm 2 The Center-Merge Function
merge_block(blk_local_sum, blk_local_size, blk_local_cost)
/∗ Update global cost ∗/
g_cost += blk_local_cost;
/∗ Update each global center and its size ∗/
for each center c do

g_centers_sum[c] += blk_local_sum[c];
g_centers_size[c] += blk_local_size[c];

end for
return g_centers_sum, g_centers_size g_cost

number of local points for each global center. In Step 2.4, the global
centers will be calculated based on the local points’ reassignment.

Step 3: Check the stop condition. At the end of every iteration (i.e.,
line 39), a new SSE cost will be calculated. If new_cost

old_cost is less than
a small value, we determine that local optimization has reduced the
cost successfully, and will continue the local optimization step. If
the ratio is close to 1, we consider the improvement is too small
to be worth further local optimizations. Here we use a threshold to
control when to exit the local optimization function.

3.2 Merging Centers
After every data block finds its own version of the best centers, the
next step is to derive a unique version of the best global centers. We
call it the center-merge step. The goal of the merge function is to put
together all the partial SSE costs, the k centers’ partial coordinate
sums, and the sizes from each data block to determine the overall
global SSE cost and global centers. Algorithm 2 shows the specific
function to merge one data block. After merging all the data blocks,
we will obtain the new global centers.

3.3 Main Body of the Algorithm
The previous functions of local_optimization_block andmerge_block
of centers are called by themain function of the tiled synchronization-
reducing algorithm, as shown in Algorithm 3. After choosing an
initial set of k clustering centers, the algorithm enters an iterative
process (lines 10–30), which executes the following steps:

(1) Apply local optimization to each block. It adjusts the global
centers based on its own data points. When the local opti-
mization is finished, the function will return a snapshot of
the local optimization. The returned information includes
the partial SSE cost, partial coordinate sum, and each clus-
ter’s size that are calculated solely based on the block’s local
points.

(2) Next, the block-local information gathered from the previous
step is reduced to determine how many points are in each
global center and the coordinate sum for all the points in
each center globally.

(3) Finally, the global center information from the second step
is used to calculate a set of new global centers. If the new
global centers have a better SSE than the previous global
centers, the iterative process will continue.
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Algorithm 3 Tiled Synchronization-reducing Clustering Alg.
1: /∗ m : number of points , n_b: number of blocks ∗/
2: /∗ k centers ∗/
3: tiled_sync_reducing_clustering(points, m, n_b, k, threshold)
4: /* set the initial k centers */
5: for each center c← 0 to k-1 do
6: g_centers[c] = points[c]
7: end for
8: Decide each cluster’s initial size in g_size_new.
9: g_cost_new = MAXIMUM
10: repeat
11: /* back up the previous iteration’s centers information */
12: g_size_old = g_size_new;
13: g_cost_old = g_cost_new;
14: g_size_new = 0;
15: g_cost_new = 0;
16: g_sum_new = 0;
17: for each block i← 0 to n_b - 1 do
18: ▷ step 1: Run local optimization on each block
19: (local_sum, local_size, local_cost)←
20: local_optimization_block(i-th block, g_centers,
21: g_size_old, membership, threshold);
22: ▷ step 2: Merge each block’s coordinate sums into global
23: (g_sum_new, g_size_new, g_cost_new)←
24: merge_block(local_sum, local_size, local_cost);
25: end for
26: ▷ step 3: Calculate the global centers
27: for each center c do
28: g_centers[c] = g_sum_new[c] / g_size_new[c];
29: end for
30: until g_cost_new >= g_cost_old

3.4 Observation on the New Algorithm
The main differences between the new synchronization-reducing
clustering algorithm and the k-means clustering algorithm are
twofold: 1) The new algorithm is more relaxed since each data
block can execute a number of iterations to optimize the global
centers autonomously without synchronizing with any other data
blocks; 2) The new algorithm has better data locality as it can apply
as many computations as possible to the same data points.

We apply the new algorithm to a variety of datasets, and find
that the tiled synchronization-reducing algorithm sometimes con-
verges faster but sometimes converges slower than the strictly syn-
chronous k-means algorithm. As detailed in the next section, the
reason is that each block works on its own local data independently.
For instance, in an extreme case, if all the blocks have entirely
different centers, it might require more iterations to converge to
the globally optimal centers. To this end, we design an enhanced
synchronization-reducing algorithm (based on new heuristics) that
is able to converge as same or faster than the k-means algorithm
(see details in the next section).

4 AN ANNEALING-ENHANCED ALGORITHM
We take advantage of the synchronous standard k-means algo-
rithm’s faster convergence rate and the synchronization-reducing
algorithm’s low communication overhead to design a new algorithm
called annealing-enhanced tiled synchronization-reducing algorithm.
The annealing-enhanced algorithm is inspired by an idea similar to

Algorithm 4 Annealing-Enhanced Tiled Synchronization-
reducing Algorithm
1: /∗ Annealing-enhanced algorithm ∗/
2: g_cost_new = MAXIMUM;
3: for each center c← 0 to k-1 do
4: g_centers[c] = points[c]
5: end for
6: repeat
7: g_old_size = g_new_size;
8: g_new_size = 0;
9: g_new_sum = 0;
10: g_cost_old = g_cost_new;
11: g_cost_new = 0;
12: for each block i← 0 to n_b-1 do

13:

if loop <= annealing_step
/∗ annealing step ∗/
(blk_local_sum, blk_local_size, blk_local_cost)←
blocked_sync_kmeans(points, g_centers, member-
ship)

14: /∗ do local optimization ∗/
15: else
16: (blk_local_sum, blk_local_size, blk_local_cost)←
17: local_optimization_block(points, g_centers,
18: g_old_size, membership, threshold);
19: end if
20: /∗ merge this block ∗/
21: (g_sum_new, g_size_new, g_cost_new)←
22: merge_block(blk_local_sum, blk_local_size,
23: blk_local_cost);
24: end for
25: /∗ update global center ∗/
26: for each center c do
27: g_centers[c] = g_new_sum[c] / g_new_size[c];
28: end for
29: until g_cost_new >= g_cost_old

simulated annealing. By intuition, the problem we want to solve is
analogous to the game of getting a ping-pong ball into the lowest
crevice in a bumpy surface. If we let the ball roll, it will stop at
a local minimum. But if we shake the surface harder, it can pop
out of the local minimum that is stuck somewhere in the middle.
Therefore, we want to shake the surface violently at the beginning
so that the ball will have the opportunities to try many different
rolling directions. After the ball almost settles down, we will shake
the surface gently or perhaps even let the ball roll by itself (i.e., no
shaking) to reach the lowest crevice.

Driven by the intuition, we employ frequent synchronizations to
simulate “hard shaking”, and employ local optimizations to simulate
“ball rolling on its own”. We also let shaking occur in the first stage
and rolling occur in the second stage in our algorithm design.

4.1 Design of the Algorithm
The new annealing-enhanced algorithm is shown in Algorithm
4. It calls two types of functions: 1) synchronous k-means (i.e.,
blocked_sync_kmeans), which simply applies the k-means algo-
rithm to each data block for only one iteration; and 2) the local
optimization function as described in Algorithm 1.
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The beginning of Algorithm 4 initializes a set of global centers
and then enters a loop in line 6. The algorithm is almost the same as
the tiled synchronization-reducing algorithm (Algorithm 3) except
for line 13. Line 13 shows that if the global iteration number is
smaller than the number of annealing steps, the synchronous algo-
rithm will be called to simulate the annealing steps, which is shown
in the rectangular box. If the global iteration number is larger than
the number of annealing steps (line 16-18), the algorithm executes
the same operations as the first tiled synchronization-reducing
algorithm which performs local optimizations.

The number of annealing steps plays an important role here.
If the number of annealing steps is too large, the algorithm is es-
sentially the same as the k-means clustering algorithm. On the
other hand, if the number of annealing steps is equal to one, the
algorithm turns into the previous tiled synchronization-reducing
clustering algorithm. In the next subsection, we will introduce how
to determine the number of annealing steps dynamically.

4.2 How to Determine the Number of
Annealing Steps

We use a progression-state based heuristic to decide when to stop the
synchronization-intensive annealing steps at runtime. The progress
of the clustering algorithm can be measured by the following met-
rics:

(1) Cost improvement: We measure the percentage by which the
SSE cost has been reduced from the previous annealing step
to the current step. If the improvement becomes negligible,
we regard that the global solution has settled down and the
local optimization should start to refine the centers without
synchronization.

(2) Number of point reassignments: We measure the number of
data points that switch from one cluster to another. It is
based on the observation that the entire process of searching
becomes more and more stable as a general trend. There are
two variants for measuring this metric: Using an absolute
number or using a percentage number.

We perform different experiments with all the above metrics, and
find that the most effective metric is to use the absolute number of
point reassignments to detect when to stop the annealing steps.

4.3 The Design of a “Valley-Searching”
Heuristic Scheme

We use a historical histogram to keep track of the total number of
reassigned points in each annealing step. The histogram is able
to show to which extent the state changes in each time step. The
heuristic we design will search for the “valley” region to stop the an-
nealing since we consider the valley represents a settled-down state.
The heuristic function runs like a parking car, and goes through 3
steps as follows.

• Throttle down: When the number of points that have been
reassigned is large, the annealing step is considered effective
and will continue running. Otherwise, the algorithm will
start to prepare for stopping the annealing steps. The next
stage is to seek an exact place to stop.

• Find an exact stop place: A “good” stop place should satisfy
the following condition: The valley (or a window) has a width
of 10, and all points in the valley have a derivate less than 10.
In other words, there exist ten consecutive annealing steps
with similar numbers of reassigned points.
• Halt: Once the stop place (i.e., a valid valley) is found, the
annealing steps will stop in that iteration.

According to our experiments, using the above heuristic method
can obtain a similar or faster performance compared to the k-means
clustering algorithm without any loss of quality (detailed results
are presented in Section 7).

5 PARALLEL IMPLEMENTATION OF THE
ALGORITHM

We have implemented the annealing-enhanced Algorithm 4 on
distributed-memory multicore HPC systems. This section intro-
duces the parallel implementation, which uses a hybridMPI/Pthread
computing model.

The parallel program is listed in Algorithm 5 and executes a
number of multithreaded MPI processes. First, the root process
reads data from a local file and sends it to the other processes.
Given m data points and P processes, each process will have m

P
data points. Second, each process assigns its local points to every
thread based on a given block size. If the block size is equal to B
and there are T threads per process, each thread will have m/P/T/B
data blocks.

After getting a subset of data, every process launches a number
of T threads and executes the thread function do_clustering_thread.
The thread entry function do_clustering_thread simply follows the
sequential Algorithm 4 except that each thread just visits and com-
putes its allocated blocks one by one in a loop. The other difference
is that do_clustering_thread uses a multi-level method to merge
each thread’s local centers to obtain the global centers. In the first
level, each thread’s own blocks are merged to get the thread-local

Algorithm 5 Parallel annealing-enhanced tiled synchronization
reducing algorithm
1: parallel_aynch_clustering(points, m, B, k, threshold, P, T)
2: /∗ B: block size ∗/
3: /∗ P: #processes; T: #threads ∗/
4: ▷ Read and distribute data points
5: if pid == 0 and tid ==0 then
6: n_b = m / B / P / T; /*#blocks per thread*/
7: Read a file and send a subset of data to each process
8: /∗ select first k data points as initial cluster centers ∗/
9: for each center c← 0 to k-1 do
10: g_centers[c] = points[c]
11: end for
12: else
13: Receive a subset of data from P0, store in points_proc
14: end if
15: ▷ Each process launches T threads to run a thread kernel
16: for each thread tid← 0 to T do
17: Allocate points_proc to each thread, store in points_thrd
18: call do_clustering_thread(points_thrd, n_b, threshold, tid,
19: g_centers)
20: end for
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result. In the second level, each thread’s result is merged with other
threads that belong to the same process. Finally, the third level is
conducted among different processes to obtain the global centers.

6 ISSUES AND DISCUSSIONS ON USING
DIFFERENT METHODS TO MERGE LOCAL
CENTERS

In our synchronization-reducing algorithms, we merge the local
optimization results of every block to get the global centers by
computing each cluster’s coordinate sum followed by dividing the
sum by the number of points in the cluster. It is similar to computing
a weighted average on all the data blocks.

There are other possible options to do the same work. In this
section, we study using different methods to get the global centers.

Here, we design and evaluate two new merging methods:
• Average of local centers: Since each block can compute its
own version of global centers independently (via local opti-
mization), we can use a much simpler method to compute
the average of all the centers from all the blocks directly.
This method assumes that all the blocks’ centers have an
equal weight.
• Double k-means: This idea is inspired by the extensively
studied sampling-basedmethods. In thismethod, we consider
the k centers computed from each block as k sample points.
Hence, N blocks will contribute N × k samples. Next, the
N ×k samples will call the regular k-means algorithm to find
the global centers. Note that the sampling method is only
used to merge local centers to global centers, not to compute
approximate solutions.

In Table 1, we compare our weighted-average method to the
above new methods using the MNIST dataset (information of the
dataset is provided in Section 7). Table 1 shows the performance of
each method in terms of execution time, number of global iterations
(not considering each block’s local optimization iterations), and the
clustering result’s SSE cost.

From the table, we can see that the weighted-averagemethod and
the double k-means method provide good SSE costs. Also, between
the weighted-average method method and the double k-means
method, weighted-average has a better SSE cost and faster execution
time.

Note that the average-of-local-centers is the fastest method, but
its cost is much worse than the other methods. Nevertheless, if a
user is only interested in approximate solutions, the average-of-
local-centers method will help. Since this work targets high-quality
clustering results, we choose to use the weighted-average method.

Table 1: Comparison of different merging methods.

Weighted average Average of
local centers

Double
k-means

Time (seconds) 5.11 0.48 5.78
Global

iterations 28 3 31

SSE cost 25.332 × 109 27.164 × 109 25.337 × 109

Table 2: Specifications of the Cray HPC System.

Compute nodes 1,020 (max 2048 cores per pbs job)
Memory per node 64 GB
Processors per node 2
Cores per processor 16
Processor AMD Opteron 6380 2.5GHz
Interconnect Cray Gemini
MPI Cray-MPICH 7.2.5

7 EXPERIMENTAL RESULTS
We examine the performance of the annealing-enhanced algorithm
by conducting the following three types of experiments:

(1) Effect of selecting different parameters,
(2) Investigation of the sequential implementation in terms of

execution time and SSE cost,
(3) Our parallel implementation compared with the open source

MPI k-means library from the Northwestern University [16].
All the experiments are conducted on a Cray XE6/XK7 system,
whose information is shown in Table 2.

The experiments used four real world datasets, which are sum-
marized in Table 3. MNIST is a dataset used for hand-writing digit
recognition [14]. It consists of 10,000 black and white training im-
ages. Each image represents one of the ten hand written digits.
CIFAR-10 and CIFAR-100 datasets are used for feature learning
and object recognition [12]. Each dataset includes 60,000 color im-
ages with labels. PLACES-2 is generated from Places 2 [27]. It is a
large collection of color pictures for different sceneries. We use the
PLACES-2 dataset to do a large 1024-core experiment.

Table 3: The datasets used in our experiments.

MNIST CIFAR-10 CIFAR-100 PLACES-2
K 10 10 100 50
#Data points 10,000 60,000 60,000 1,024,000
Dimensions 784 3,072 3,072 1,024
Dataset size 17MB 626MB 629MB 3.25GB

7.1 Effect of Parameters
We present how a parameter may affect the performance of our
algorithm. In particular, we study the parameters of the number of
annealing steps and the stop condition in local optimizations.

Annealing steps: Annealing steps are the “hard-shaking” opera-
tions that invoke more frequent synchronizations. Table 4 shows
the effect of the annealing steps on the CIFAR-100 dataset. From
the table, we can see that the algorithm converges the fastest with
100 annealing steps. But when using 125 annealing steps, the algo-
rithm becomes much slower. This result shows that the algorithm
is sensitive to the number of annealing steps. That is, stopping
too early or too late will lead to suboptimal performance. Hence,
the annealing step must stop at an appropriate “valley” location.
Such a special phenomenon has led us to take efforts to develop
the “valley-searching” heuristic scheme as presented in Section 4.

Stop conditions: The local optimization function can execute a
number of iterations by itself without any communications. Table 5



Synchronization-reducing clustering method: Issues and improvements MLHPC’17, November 2017, Denver, Colorado, USA

Table 4: Effect of the number of annealing steps.

Annealing
steps SSE cost Global

#iteration Time (seconds)

50 398,835,242,961.11 140 613.72
75 398,845,351,171.04 151 502.88
100 398,861,208,887.09 124 238.8
125 398,838,864,406.40 208 540.33

Table 5: Effect of stop condition.

Threshold SSE cost Global
#iteration Time (seconds)

90% 25,331,986,841.05 32 12.59
95% 25,331,986,841.05 32 12.59
99% 25,334,655,274.55 26 10.22
100% 25,541,238,298.66 21 14.33

shows the effect of the stop condition that controls when to exit the
local optimization on the MNIST dataset. When the stop condition
threshold = p%, local optimization will not exit until the new cost is
greater than p% of the old cost. From various experiments, we find
that the threshold of 99% typically provides the best performance.
Hence, we set local optimization stop condition to be 99% in our
experiments.

7.2 Performance Evaluation of the Sequential
Implementation

We compare the performance of our sequential annealing-enhanced
implementation with the k-means algorithm using the datasets of
MNIST, CIFAR-10, and CIFAR-100. This experiment will examine
not only the total execution time but also the SSE cost. Table 6 shows
execution time in seconds, and Table 7 shows the SSE cost and the
number of global iterations measured for the same experiment.

MNIST: From Table 6, we can see that our algorithm is 74% faster
than k-means. As revealed by Table 7, this speedup is due to the
reduced number of global iterations (i.e., 54 iterations versus 106
iterations). The difference in their SSE costs is 0.026%.

CIFAR-10: From Table 6, our algorithm is slightly faster than k-
means by 3%. The speedup is limited because both algorithms have
a similar number of global iterations (i.e., 80 versus 88 as shown in
Table 7). Their SSE cost difference is almost equal to zero.

CIFAR-100: For CIFAR-100, our algorithm is 18% faster than k-
means, as shown in Table 6. From Table 7, we can find that our
algorithm has 124 global iterations while k-means has 201 global
iterations, and therefore runs faster. The performance speedup is
not linearly proportional to the reduced number of global iterations
since each global iteration also includes the local optimization
function which has a number of iterations. Their corresponding
SSE difference is 0.005%.

7.3 Performance Evaluation of the Parallel
Implementation

To evaluate the scalability of our parallel program, we did exper-
iments with the MNIST, CIFAR-10 and CIFAR-100 datasets using

Table 6: Performance comparison for sequential algorithms
(Table 7 also shows their SSE cost and number of iterations).

K-means
(seconds)

Annealing-enhanced algorithm
(seconds)

MNIST 15.6 8.9
CIFAR-10 303.5 295
CIFAR-100 6700.6 5650

4 to 32 CPU cores. In addition, for the largest dataset PLACES-2
(3.25GB), we used 1024 CPU cores to solve the problem quickly.

Figure 1 shows our experimental results with the MNIST dataset.
Given one CPU core, our parallel algorithm is 74% faster than the
MPI k-means library. When using two and four CPU cores, our
parallel program is faster than the MPI k-means library by 80%.
From one core to 4 cores, we are able to reduce the total execution
time from 9 seconds to 2.2 seconds. As for the CIFAR-10 dataset,
our parallel implementation has similar performance to the parallel
k-means implementation (i.e., 3% faster).

Figure 2 shows the experimental results with the CIFAR-100
dataset. From one CPU core to 32 CPU cores, our algorithm is
able to outperform the MPI k-means by 19%. Also, our parallel
implementation shows a good scalability. By using 32 cores, we can
decrease the execution time from 5651 seconds to 180 seconds. In
addition, the SSE costs of the parallel implementation are the same
as the costs of the sequential implementation that are shown in
Table 7, thus they are not shown here again.
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Figure 1: Scalability experiment on the MNIST dataset.
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Figure 2: Scalability experiment on the CIFAR-100 dataset.
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Table 7: SSE cost and the number of global iterations for k-means and our annealing-enhanced algorithm.

K-means Annealing-enhanced algorithm
SSE cost Iterations SSE cost Iterations

MNIST 25,322,079,191.39 106 25,328,820,274.91 54
CIFAR-10 474,370,518,296.29 88 474,370,686,193.56 80
CIFAR-100 398,838,513,925.16 201 398,861,208,887.09 124

Our largest experiment was conducted with the 3.25GB PLACES-
2 dataset using 1,024 CPU cores. On 1,024 CPU cores, the MPI k-
means library takes 30.1 seconds while our parallel implementation
takes 26.7 seconds to cluster PLACES2. The performance improve-
ment is around 11%. Also, the two programs’ SSE costs are almost
identical (less than 0.005% difference, i.e., SSE=2,228,653,471,842.53
versus SSE=2,228,653,642,874.45). Note that experiments with differ-
ent datasets have different speedups due to the fact that the actual
convergence rate is dependent on the datapoint distribution in the
input data.

8 CONCLUSION
This paper presents an annealing-enhanced tiled synchronization-
reducing clustering algorithm that is designed for manycore HPC
systems. This work makes three contributions. First, it combines the
design of tiles and the asynchronous local optimization to design
a new algorithm. In the algorithm, an iterative local optimization
is computed on each data block to obtain a clustering result. Each
block’s local cluster result is later merged by different merging
methods. By combining the two techniques of blocking and asyn-
chronous clustering, we can reduce the number of synchronizations
among threads and processes. Second, to avoid the possible slower
convergence rate incurred by reduced synchronizations, we intro-
duce new techniques of stop condition and annealing to achieve as
good or better performance than the standard k-means clustering
algorithm while keeping nearly the same SSE cost. Stop condition
is introduced to control the time spent on each block’s local opti-
mization. Annealing is introduced as a heuristic to resolve the issue
of slower convergence rate due to reduced synchronizations. Third,
we design and implement a new parallel implementation to demon-
strate the performance of the annealing-enhanced algorithm. The
techniques developed in the work are generic, and can be extended
and applied to support other parallel machine learning methods on
both HPC and cloud systems.
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