
research papers

1158 https://doi.org/10.1107/S160057672400517X J. Appl. Cryst. (2024). 57, 1158–1170

ISSN 1600-5767

Received 10 January 2024

Accepted 31 May 2024
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High-energy X-ray diffraction methods can non-destructively map the 3D

microstructure and associated attributes of metallic polycrystalline engineering

materials in their bulk form. These methods are often combined with external

stimuli such as thermo-mechanical loading to take snapshots of the evolving

microstructure and attributes over time. However, the extreme data volumes

and the high costs of traditional data acquisition and reduction approaches pose

a barrier to quickly extracting actionable insights and improving the temporal

resolution of these snapshots. This article presents a fully automated technique

capable of rapidly detecting the onset of plasticity in high-energy X-ray

microscopy data. The technique is computationally faster by at least 50 times

than the traditional approaches and works for data sets that are up to nine times

sparser than a full data set. This new technique leverages self-supervised image

representation learning and clustering to transform massive data sets into

compact, semantic-rich representations of visually salient characteristics (e.g.

peak shapes). These characteristics can rapidly indicate anomalous events, such

as changes in diffraction peak shapes. It is anticipated that this technique will

provide just-in-time actionable information to drive smarter experiments that

effectively deploy multi-modal X-ray diffraction methods spanning many

decades of length scales.

1. Introduction

Metals play a significant role in modern society. They are used

in various applications such as transportation, construction,

energy generation, storage and delivery, and security. The

performance requirements for these polycrystalline engi-

neering materials have pushed the diversity and complexity of

processes and elements employed in producing those mate-

rials to optimize structure and properties (Greenfield &

Graedel, 2013; Graedel et al., 2015). Frameworks like inte-

grated computational materials engineering (Olson, 2000) and

materials informatics (Rajan, 2005) aim to accelerate material

discovery and process optimization so that new materials that

meet performance requirements can be deployed more

quickly. The calibration and validation of these frameworks

rely on microstructure and associated attributes acquired

across multiple length scales under different conditions.

High-energy synchrotron X-ray (>50 keV) diffraction

methods can non-destructively characterize metallic poly-

crystalline materials in their bulk form. In particular, high-

energy diffraction microscopy (HEDM) can extract 3D

microstructure information and grain-resolved attributes; it

can also track their evolution when combined with in situ

thermo-mechanical loading capabilities (Lienert et al., 2011;

Schuren et al., 2015; Naragani et al., 2017). The far-field
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HEDM (FF-HEDM) variant (Bernier et al., 2020; Park et al.,

2021) can provide the center of mass, crystallographic orien-

tation and elastic strain tensor for each constituent grain in a

polycrystalline aggregate. These FF-HEDM measurements

are often combined with other measurement modalities such

as near-field HEDM and tomography to fully understand the

microstructure and state and their evolution in a polycrystal-

line material (Suter et al., 2008; Turner et al., 2017; Naragani et

al., 2017; Sangid et al., 2020).

In a typical in situ HEDM experiment, the macroscopic

stimulus to be applied on a sample is decided a priori, on the

basis of a known response relationship. For instance, in an in

situ HEDM experiment where a sample is subject to various

levels of mechanical loading to study the material response

heterogeneity at the mesoscale, the levels at which the loading

is paused – to deploy a higher-resolution and more beamtime-

consuming characterization method – are often decided

according to macroscopic milestones such as yield strength in

the macroscopic stress–strain curve of the material. Alter-

natively, such experimental decisions to be made on the fly

may require heroic efforts during time-limited beam access to

reduce the full HEDM data set and identify when the scien-

tifically interesting phenomena occur (Naragani et al., 2017;

Ravi et al., 2021; Suter et al., 2008; Li et al., 2023; Maddali et al.,

2020; Simons et al., 2015). Hence, a high level of reliable

automation is desirable and crucial for a successful study.

Here, we propose a robust, self-supervised, machine

learning based framework (Fig. 1) that enables rapid identi-

fication of, and thus automated response to, the minute

changes in diffraction spots measured by FF-HEDM and

probable microstructural changes in polycrystalline metals.

This framework is particularly timely with the improved bril-

liance and coherence of the next-generation diffraction-

limited synchrotron X-ray sources and significant advances in

detector technologies capable of rapid and accurate

measurement of single-photon events – developments that

allow many mesoscale measurement techniques like HEDM

to be combined with nanoscale techniques like Bragg coherent

diffraction imaging and dark-field X-ray microscopy in a single

instrument (Maddali et al., 2020; APS, 2019). Our framework

can provide quantitative actionable information about mate-

rial state and guide experimenters as to when to deploy these

higher-resolution techniques. We refer to this actionable

information as the rare event indicator (REI). Using a variety

of in situ FF-HEDM data, we demonstrate that the proposed

framework and REI are capable of rapidly detecting

mechanical yielding, an eventual but rare event that experi-

menters often seek to capture through in situ FF-HEDM

experiments.

2. Methods

2.1. Rare event detection workflow

For several years, event detection, also known as outlier or

anomaly detection, has been a vibrant and dynamic area of

study across diverse academic communities. Recently,

applying deep learning has opened new avenues for event

detection, emerging as a critical and promising direction in this

field (Pang et al., 2021). Typical deep learning based event
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Figure 1
An illustration of the workflow for rapid inference of microstructural deformation. A polycrystalline sample is subject to mechanical loading while we
acquire HEDM data. Bragg diffraction spots from the initial material state are used to train an image representation model (encoder) and a clustering
model. These two models combined are sensitive to changes in the diffraction spots. Using these models, the REIs are computed as we continue to apply
mechanical loading to the sample and acquire HEDM data. A significant increase in REI is quantitative actionable information that the experimenters
can use to steer the course of the experiment.



detection involves a three-phase process. First, in the data

preprocessing phase, the data set is cleaned, normalized and

prepared for modeling. Second, during model training, a deep

learning model, such as an autoencoder, is trained on a

‘normal’ or ‘baseline’ data set to learn typical data patterns

and accomplish the feature extraction task. Finally, in the

event detection phase, this trained model evaluates new data,

identifying ‘events’ by measuring deviations from the learned

patterns.

In this study, as shown in Fig. 2, we employ the BraggNN

model (Liu et al., 2022) as our neural network model for

feature extraction, specifically fine-tuned for image repre-

sentation. To facilitate the unsupervised training of our novel

image representation model, we adopt the BYOL (bootstrap

your own latent) approach (Grill et al., 2020). Additionally, we

utilize the K-means clustering algorithm to compute the

actionable information as a rare event indicator. By separating

the feature extraction tool and the event detector into two

independent modules, our workflow can easily expand its

support for event detection in various applications. Further-

more, our current design demonstrates promising results,

showcasing the effectiveness of our event detection workflow

on X-ray diffraction data.

We provide in the following a comprehensive overview of

the different building blocks constituting our proposed

workflow. Section 2.1.1 elucidates the preprocessing steps

involved in handling the HEDM diffraction images. Section

2.1.2 describes the specifics of training the image representa-

tion model. We illustrate the modules associated with

processing the reference data set and evaluating subsequent

experimental data sets in Sections 2.1.3 and 2.1.4, respectively.

2.1.1. Data preprocessing. In the context of our workflow, a

fundamental objective of data preprocessing is to transform

each dark-field-subtracted diffraction pattern extracted from a

stack of FF-HEDM diffraction patterns into a set of peak

patches representing individual peaks. To accomplish this, we

utilize the component analysis library provided by OpenCV

(Bradski, 2000). A data set in our workflow is defined as the

collection of peak patches (ranging in number from thousands

to millions) extracted from diffraction images collected during

a contiguous rotation segment (up to 360�). Depending on the

material state during acquisition, data sets are labeled base-

line, reference and testing data sets. The baseline and reference

data sets are typically any data sets collected before applying a

macroscopic stimulus to the material. The testing data set is fed

to the workflow as the material undergoes microstructural

change.

2.1.2. Image representation model training. During the

training phase of the image representation model, we utilize

the BYOL method (Grill et al., 2020) on the preprocessed
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Figure 2
Rare event detection workflow with three phases. The first phase (orange dashed rectangle) trains an image representation model (trained encoder)
using a baseline data set for feature extraction. The trained encoder from the first phase is applied to a reference data set followed by the K-means
clustering algorithm to obtain K centers to characterize the reference data set in the second phase (blue dashed rectangle). The output of the trained
encoder from the first phase and the clustering model from the second phase, applied on the testing data set, is thresholded to determine REI for the
testing data set in the third phase (green dashed rectangle). The different hyperparameters at each step are shown in red text.



baseline data set. BYOL has emerged as a prominent self-

supervised learning technique in deep learning, addressing the

challenge of training neural networks without explicit labels or

annotations. In Fig. 2, BYOL, depicted within the orange

dashed rectangle, leverages two sets of neural networks:

online and target networks. Each network comprises an

encoder and a projector. For the encoder, we refine the

BraggNN model by removing its fully connected layers. The

projector, a two-layer fully connected neural network, maps

the encoder’s output to a lower-dimensional space, enhancing

the model’s generalizability.

The encoder’s role is to extract the features of each data

patch, while the projector aims to reduce the dimensionality of

the encoder’s output, facilitating improved model perfor-

mance. During training, the online network learns to represent

each peak patch in a latent space, while the target network

maintains a moving average of the online network’s para-

meters. The trained encoder is saved for use in subsequent

phases. The core idea of BYOL is to encourage the online

network to generate latent representations similar to those

produced by the target network. By comparing these repre-

sentations, BYOL effectively learns powerful representations

for the given task. This approach has demonstrated remark-

able success across various domains, enabling models to

achieve state-of-the-art performance without the need for

costly annotated data.

Even though our workflow only uses the trained encoder of

the online network from BYOL, due to the structure and

training of BYOL, the dimensions of the encoder, projector

and predictor networks and the number of epochs for training

are important hyperparameters, which can affect REI when

applied to the training data set later on. Section 3.1.1 describes

the hyperparameters in more detail.

BYOL must be trained to differentiate between a peak’s

translation and rotation (transformation) and changes to

salient features (such as the width) of a peak. A well trained

BYOL is more sensitive to changing peak features and less

sensitive to transformation. In each epoch of BYOL training,

as illustrated in Fig. 2 within the orange dashed rectangle, we

randomly select a peak patch from the preprocessed baseline

data set. Fig. 3 illustrates the goal of BYOL training. In this

figure, the first column shows a randomly selected diffraction

peak. Fig. 3(a) shows the original diffraction peak (first panel)

and ten transformed versions of it; Fig. 3(b) shows the original

diffraction peak (first panel) and ten other unrelated

randomly selected peaks. Each of these peaks is treated as a

vector in the image representation space. If we use the cosine

distance between vectors as the metric to indicate similarity or

difference between two patches, the median cosine distance is

0.0058 for the patches in Fig. 3(a) while it is 0.051 for the

patches in Fig. 3(b). [The cosine distance between vectors u

and v is defined as

1 �
u � v

kuk2kvk2

;

where u · v represents the dot product of u and v.] The training

of BYOL aims to replicate this result by minimizing the

distance between the output of the target network and the

online network, ideally converging to zero.

2.1.3. Reference data set processing. In the reference data

set processing phase, our first step involves feeding all patches

from the reference data set into the trained representation

model (encoder) and converting them into a collection of

representation vectors. These vectors capture each patch’s

essential features and characteristics.

Subsequently, we utilize the K-means clustering algorithm

to group these representation vectors into K centers. This

clustering process allows us to identify common patterns and

clusters within the reference data set. The resulting K centers

(another hyperparameter) serve as representative points that

summarize the distribution and variations present in the

reference data set.

The output of the reference data set processing phase,

comprising the K centers obtained through K-means clus-

tering, is saved for the subsequent testing data set evaluation

phase. These centers provide a reference point for comparison

and evaluation when analyzing the similarity and discrepancy

between the testing data sets and the reference data set.

2.1.4. Testing data set evaluation. During the evaluation

phase of a testing data set, we utilize the trained representa-

tion model (encoder) to generate a collection of representa-

tion vectors for the testing data set. Each vector captures the

essential characteristics of a particular data instance (peak

patch) within the testing data set.

Next, we compute the Euclidean distances between each

representation vector and the K centers obtained from the
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Figure 3
For a randomly picked peak (left-most), the median cosine distance between the peak and ten transformed views (a) is 0.0058, while the median cosine
distance with ten randomly picked peaks (b) is 0.051, nearly 10� further.



previous phase. This distance calculation allows us to deter-

mine the closest center for each vector, enabling us to assign it

to a specific cluster. Additionally, we update the vector’s

closest center to obtain an assignment to K centers and its

corresponding confidence level.

We introduce REI to quantify the uncertainty in the

assignments. This score is determined by calculating the

percentage of representation vectors whose confidence level is

below a predefined threshold value, denoted as t (another

hyperparameter). A lower confidence level indicates higher

uncertainty in the assignment to a specific center. Accordingly,

the REI values will fall between 0 and 1.

By repeating this procedure for all testing data sets, we

obtain REIs for each data set. These scores provide an indi-

cation of the level of uncertainty associated with the assign-

ment of data instances to the K centers. Collectively, these

REI values form a figure that summarizes the uncertainty

across all data sets, allowing for a comprehensive assessment

of the performance and reliability of the event detection

workflow.

2.2. High-energy diffraction microscopy experiments

The FF-HEDM data sets presented here were acquired at

the 1-ID beamline of the Advanced Photon Source (APS) at

Argonne National Laboratory. Details of the FF-HEDM

instrument geometry (Fig. 4) are given by Park et al. (2021).

The main features are as follows:

(i) Monochromatic, high-energy, synchrotron X-rays were

used as the probe to interrogate the material.

(ii) Transmission geometry with an area detector (Lee et al.,

2007) was used to capture the intensity of the diffraction spots

in reciprocal space. Table 1 lists the X-ray energies and

sample-to-detector distances used.

(iii) The incident X-ray beam had a rectangular shape. The

beam size along xL was sufficiently large to illuminate the cross

section of the sample in its gauge section, and the beam size

along yL was varied depending on the experiment’s main

objectives and required resolution in between layers; it was

varied only when investigating the effect of beam size on REI.

(iv) Fig. 4 shows an example sample geometry used for the

uniaxial tension testing. When possible, a set of 30 mm cube

gold markers (Shade et al., 2016) were attached on the sample

gauge section surface so that an identical volume of material

was interrogated throughout the in situ HEDM experiment.

(v) The sample was rotated about yL at a constant angular

speed over an ! range of 360� while a set of diffraction

patterns were acquired. Typically, this set consisted of 1440

frames, each covering an angle of 0.25�. Acquiring a set took

approximately 6 min.
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Figure 4
A schematic of the FF-HEDM instrument geometry. The stage stack consists of translation and rotation capabilities to align the !-rotation axis and the
sample to the X-ray beam. The picture shows the setup and sample geometry used to acquire the in situ FF-HEDM data for the 304L-SS sample.

Table 1
FF-HEDM instrument parameters.

X-ray energy
(keV)

Sample-to-detector
distance (mm)

304L-SS (Section 3.1) 71.68 803
Ti-6-4 (Section 3.2) 71.68 1163
Sand (Section 3.3) 71.68 1601
Ti-7 (Section 3.6) 61.33 756



(vi) In a typical in situ FF-HEDM experiment at the APS,

Microstructural Imaging using Diffraction Analysis Software

(MIDAS) (Sharma et al., 2012a,b; Sharma, 2023) is used to

analyze the set of diffraction patterns and extract a 3D map.

At moderate deformation levels, it takes approximately 8 min

to acquire the 3D map from a data set on a high-performance

computing cluster.

3. Results and discussion

We acquired four sets of in situ FF-HEDM diffraction patterns

using the instrument described in Section 2.2. The first set of

patterns was acquired with a 304L stainless steel (304L-SS)

sample with a face-centered cubic crystal symmetry. The

second set of patterns was acquired with a commercially pure

Ti (CP-Ti) sample with a hexagonal close-packed crystal

symmetry. These two data sets were acquired in uniaxial

tension. The third data set used a pack of sand with a trigonal

crystal symmetry under compression. The fourth data set was

acquired on a Ti-7 Al alloy sample with a hexagonal close-

packed crystal symmetry under continuous uniaxial tension.

We anticipated that the 304L-SS, CP-Ti and Ti-7 Al samples

would accommodate mechanical yielding or plastic deforma-

tion by crystallographic slip (Taylor, 1938), resulting in

diffraction spot smearing (Obstalecki et al., 2014), while the

sand sample would exhibit brittle fracture with minimal

diffraction spot smearing. For the sand sample, we expected

the number of diffraction spots to increase with the applied

load as the sand particles fracture into smaller but still

coherent pieces; therefore, the shape of resulting diffraction

spots was expected to exhibit minimal or no smearing, while

their intensity would show a dramatic decrease. With these

expectations, our rare event detection framework, which

consists of an image representation model and a clustering

model, was trained using various permutations of diffraction

patterns acquired at zero load–zero strain state (reference

state) from each sample. These framework permutations were

deployed to assess whether yielding could be detected reliably.

Furthermore, the sensitivity of our framework and REI to

instrumental changes was assessed using the 304L-SS FF-

HEDM patterns acquired using a variety of beam sizes and

incident X-ray photon flux levels.

3.1. In situ FF-HEDM of stainless steel

The dotted yellow curve in Fig. 5 shows the typical stimulus

(stress)–response (strain) relationship of a metallic material.

At lower stresses, the relationship between macroscopic stress

and strain is nominally linear and elastic, but at larger stresses,

this is no longer the case. The level of stress where the linear

relationship between stress and strain breaks from linearity is

often referred to as the material’s macroscopic yield point or

yield stress (approximately 225 MPa in this case). Here, the

stress–strain curve was acquired during our in situ FF-HEDM

experiment under uniaxial tension. The geometry of the 304L-

SS sample was identical to that described by Wang et al.

(2022): 11 mm (length) � 1 mm (width) � 1 mm (thickness)

in the gauge section. Gold markers were attached along the

gauge section (Shade et al., 2016) so that an identical material

volume could be measured throughout the experiment.

In this in situ FF-HEDM experiment, there were four target

stress levels in the elastic regime, five in the elastic–plastic

transition regime (the ‘knee’ of the stress–strain curve) and

four in the plastic regime well beyond the knee. Each target

stress level was reached through a constant displacement rate

of 1.1 mm s� 1 to achieve a nominal strain rate of 0.0001 s� 1;

once the target stress level was reached, the applied stress was

intentionally relieved by approximately 10 before carrying out

the FF-HEDM pattern acquisition to prevent further changes

to the material by stress relaxation during the scans. (The

sample was under displacement control during FF-HEDM

pattern acquisition; the applied stress level fluctuation was

minimal during an FF-HEDM scan even in the plastic regime.)

An X-ray beam size of 2 � 0.4 mm was used for FF-HEDM

pattern acquisition. The width of the X-ray beam ensured that

a 0.4 mm-tall material volume in the sample gauge section was

always illuminated by X-rays during an FF-HEDM pattern

acquisition. At each target load level, four sets of FF-HEDM

pattern acquisition were executed, illuminating in total a

1.6 mm-tall contiguous volume (four layers) in the sample

gauge section. The gold markers in the gauge section ensured
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Figure 5
Applied stress, REI, average FWHM and average axial lattice strain
versus strain for (a) the entire in situ FF-HEDM experiment, and (b)
magnified view near the elastic–plastic regime. The error bars for REI,
FWHM and lattice strain at a target stress level indicate the range of
respective metrics observed in the four 0.4 mm-tall material volumes. The
dotted yellow curve shows the stress–strain curve of the 304L-SS sample
measured during the in situ FF-HEDM experiment.



that the identical material volume was interrogated across

multiple target load levels reached during in situ loading.

At each target load level, FF-HEDM patterns were used to

compute the REI,1 average diffraction spot full width at half-

maximum (FWHM) in the azimuthal direction and average

axial lattice strain.2 Fig. 5 shows the evolution of these metrics

with applied stress, denoted by the green dots, the orange dots

and the blue dots, respectively. Here, the image representation

model and the clustering model to compute REI were trained

using the 304L-SS sample’s reference state diffraction pattern.

The FWHM and axial lattice strain were computed using

MIDAS (Sharma et al., 2012a,b). All three metrics, namely

REI, average diffraction spot FWHM in the azimuthal direc-

tion and average lattice strain, require the extraction of

diffraction peaks from 2D diffraction patterns, with the

subsequent steps being inference (for REI, requiring �2 s

computation time), peak-shape fitting (for FWHM, requiring

�100 s computation time) and full microstructure recon-

struction (for lattice strain, requiring �500 s computation

time).

We demonstrate that REI can provide actionable infor-

mation comparable to that from the traditional metrics for

polycrystalline metallic alloys subjected to mechanical

loading. Fig. 5(b) is a magnified view of Fig. 5(a) near the

elastic and elastic–plastic transition regime. In this regime,

researchers often need to make the difficult decision to pause

the loading and conduct higher-resolution measurements and

allocate precious beam time on the basis of limited a priori

knowledge about the material (such as the stress–strain curve

obtained ex situ) or relying on FWHM or lattice strain metrics

that require FF-HEDM patterns acquired over a larger

angular range, with substantial computing resources and time.

In general, the three metrics follow the trends observed in the

macroscopic stress–strain curve, with significant inflections

occurring near the knee of the stress–strain curve. REI and

FWHM remain fairly constant in the elastic regime. As the

material approaches its macroscopic yield point, REI and

FWHM both start to increase, most notably in the region

highlighted by the purple ellipse, roughly coinciding with the

macroscopic yield point. They continue to increase substan-

tially as the sample transitions into the plastic regime. On the

other hand, the average axial lattice strain increases linearly in

the elastic regime. It breaks from linearity near the macro-

scopic yield point and then remains relatively constant in the

plastic regime. [This is expected as lattice strain measures only

the elastic strain (change in the lattice spacing).] This figure

illustrates that REI is a metric sensitive to material yielding

accommodated by crystallographic slip and delivers informa-

tion comparable to that provided by the traditional metrics

while being at least 50 times faster to compute.

3.1.1. Hyperparameter tuning. In contrast to model weights

learned during training, hyperparameters are parameters that

the model cannot optimize during training. Typically, multiple

configurations of hyperparameters are used to train various

models, and the best-performing values for hyperparameters

are chosen accordingly. Hyperparameters play a pivotal role in

the machine learning workflow, determining the configuration

and behavior of a model. In our REI workflow, the hyper-

parameters during model training are as follows: the size of

patches used for the workflow, the data set used for training

the encoder, the data set used for training the clustering

model, the encoder dimension, the projector dimension, the

predictor dimension, the number of epochs for training the

encoder, the confidence threshold, t, and the number of clus-

ters, K.

The patches should be large enough to capture the shape of

diffraction peaks and small enough not to negatively affect

computation speed. We chose 15 � 15-pixel patches; this size

is the same for the baseline, reference and training data sets.

As shown in Section 3.4, REI is more sensitive to changes in

beam size, beam flux and rotation steps than to changes in

position and starting rotation angles. Thus, the data sets used

for training the encoder (baseline data sets) and for training

the clustering model (reference data sets) only included data

sets with fixed beam size, beam flux and rotation steps.

The encoder, projector and predictor dimensions determine

the shape of BYOL. The choice of these numbers greatly

affects the trained encoder that converts the patches into the

latent representation. We chose the following values of the

encoder, projector and predictor dimensions: 32, 64 and 64,

respectively.

We employ a confidence summation approach to determine

our model’s optimal number of training epochs. The idea

behind this method is straightforward: a well trained image

representation model should be able to identify pairs of

transformed patches within a set of random patches.

Our confidence summation process unfolds as follows. At

the conclusion of each training epoch, we randomly select 100

patches from our data set, convert them into 100 representa-

tion vectors using our model, and calculate a confidence score

for each one. This score is derived from the distances between

a specific patch representation and ten other patches. To

compute the confidence score, we use the formula

Confidence ¼
jD1 � D2j

D2

; ð1Þ

where D1 and D2 are the shortest and second shortest Eucli-

dean distances, respectively, among all pairs of representation

vectors. If the distance between two transformed patches is

not the closest one among these ten patches, we assign a

confidence score of � 1. This process enables us to evaluate

how patches differ from their nearest neighbors regarding

distance. Finally, we sum all 100 confidence scores for all

representations of patches.

In our experiments using the stainless steel data set

described in Section 3.1, we observe that the confidence score

stabilizes after approximately 100 epochs, as depicted in Fig. 6.
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1 Here, the FF-HEDM patterns acquired at the zero load–zero strain point
were used as the baseline data set to train the image representation model. For

more details on the image representation model, readers are referred to
Section 2.1.
2 The FWHM and axial lattice strain are the more commonly used metrics to
detect the rare event, namely yielding in this case.



Therefore, we opt to set the number of training epochs to 100

for our image representation model. The models were trained

on a computer with an NVIDIA v100 GPU, and the training

time was 111 min for 100 epochs.

To determine the optimum number of clusters, K, and

threshold, t, we will describe hyperparameter tuning as it was

applied to the stainless steel data set described in Section 3.1.

The performance of the model is evaluated by computing the

change in REI when the material first undergoes plastic

deformation (two data points in the purple ellipse in Fig. 5).

REI sensitivity, REIsensitivity (shown in Fig. 7), is maximized

during hyperparameter tuning and defined as follows:

REIsensitivity ¼
REImin

plastic � REImax
elastic

�REIplastic

; ð2Þ

where REImin
plastic is the smallest REI value for the data point

after the onset of plastic deformation, REImax
elastic is the largest

REI value for the data point before the onset of plastic

deformation in the elastic regime and �REIplastic is the spread

in REI (due to local microstructure variations) among

different volumes scanned for the data point after the onset of

plastic deformation. This criterion ensures that the goal of

detecting the onset of plastic deformation is achieved: nega-

tive REIsensitivity means the model would not distinguish

between data sets collected under elastic and plastic regions.

Furthermore, values greater than 1 ensure that the detected

change between elastic and plastic deformation is greater than

the uncertainty in REI during plastic deformation.

Fig. 7 shows a contour plot of REIsensitivity as a function of

number of clusters and confidence threshold. Only positive

values of REIsensitivity are shown. It can be seen that a higher

number of clusters and higher confidence threshold result in

higher REIsensitivity. As depicted in Fig. 7, the selection of K as

40 and the threshold as 0.5 leads to the highest sensitivity of

REIsensitivity, reaching 5.6.

3.2. In situ FF-HEDM of titanium alloy

Fig. 8 shows the stress–strain curve and REI results for a

CP-Ti alloy, magnified in the elastic and elastic–plastic tran-

sition regime. The dotted yellow curve shows the stress–strain

curve of the CP-Ti material in uniaxial tension acquired during

the in situ FF-HEDM experiment; it shows similar character-

istics to the stress–strain curve for the 304L-SS sample (Fig. 5)

with the elastic–plastic transition occurring approximately at

200 MPa. Here, the in situ FF-HEDM experiment was

conducted using the rotation and linear axial motion system
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Figure 6
Accuracy plot of the image representation model.

Figure 7
Contour plot of REI sensitivity as a function of number of clusters K and
threshold t.

Figure 8
The in situ stress–strain curve of the CP-Ti alloy sample (yellow dots) and
associated REI results (blue dots) in the elastic and elastic–plastic tran-
sition regimes. REI remains roughly constant in the elastic regime. As the
material approaches its macroscopic yield point, REI also starts to
increase significantly, highlighted by the purple ellipse, and it continues to
increase as the plastic regime sets in. The abrupt change in REI near 0.1
strain is due to a beam size change between two target load levels; this is
discussed further in Section 3.4.



(RAMS) load frame (Schuren et al., 2015). The sample

geometry was identical to the one presented by Menasche et

al. (2021) with a 1 � 1 mm cross section in the gauge section.

Gold markers were attached in the gauge section (Shade et al.,

2016) to keep the illuminated material volume consistent

throughout the in situ experiment. The experimental proce-

dure was similar to that used for the 304L-SS sample: the

nominal strain rate was 0.0001 s� 1 and loading was tempora-

rily paused to collect FF-HEDM patterns along multiple

layers in the sample gauge section.

The blue dots in Fig. 8 show the evolution of REI when the

image representation model and clustering model were

trained by using the 304L-SS FF-HEDM patterns acquired at

zero load–zero strain (reference state). The overall evolution

of REI is consistent with that observed in the 304L-SS sample:

REI remains relatively constant in the elastic regime and then

starts to increase near the knee of the stress–strain curve,

demonstrating that the image representation model and the

clustering model (and therefore REI) are sensitive to mate-

rials accommodating plastic deformation through crystal-

lographic slip. Furthermore, Fig. 8 illustrates that those models

are transferable between materials with similar deformation

modes. The abrupt decrease in REI at approximately 0.1 strain

(or 150 MPa applied stress) is due to a change made at this

point in the beam size used for FF-HEDM experiments in

order to alter the vertical spacing between layers. The

robustness and sensitivity of REI are examined further in

Section 3.4.

We computed several cases of REI in order to examine the

performance of the rare event detection framework and the

choice of baseline and reference data (Fig. 9). Table 2

summarizes the permutations of training reference state

patterns to compute the REI cases. In all four cases, we used

the optimized hyperparameter values determined from the

304L-SS experiment. Naturally, the absolute value associated

with each REI case is different between the four cases as the

training data sets are different; however, the four cases all

share a similar trend in that they remain relatively constant in

the elastic regime, start to increase near the elastic–plastic

regime and continue to increase in the plastic regime. The

inflection point where the REI values start to increase is

consistently near the macroscopic yield point. This highlights

that the image representation and clustering models trained

on a data set with a similar deformation mode but collected on

a different sample or material are transferable. While it is

recommended that the patterns acquired before the beginning

of in situ loading be used as the training set, such transfer-

ability can be useful when using REI to estimate the material

state, for instance, in a high-throughput measurement setup.

3.3. In situ FF-HEDM of sand

In Section 3.2, we established that the image representation

and clustering models trained using the 304L-SS FF-HEDM

patterns acquired at the reference state can be used to detect

rare events and anomalies in other material systems that share

a similar deformation modality. Here, we introduce a set of

in situ diffraction patterns acquired from a material system

that does not accommodate deformation by crystallographic

slip.
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Figure 9
The in situ stress–strain curve and REI evolution for the CP-Ti sample in
the elastic and elastic–plastic transition regime. Four cases of REI using
permutations of training reference state patterns (Table 1) are presented.

Table 2
The reference state patterns employed to train the encoder and clustering
models for the REI cases presented in Fig. 9.

REI case
Training reference state
patterns for encoder

Training reference state
patterns for clustering model

1 CP-Ti sample CP-Ti sample

2 CP-Ti sample 304L-SS sample
3 304L-SS sample 304L-SS sample
4 304L-SS sample CP-Ti sample

Figure 10
Stress–strain curve and REI evolution for the sand sample. Stress and
strain are compressive, mimicking the compaction that sand is typically
subjected to. The stress–strain curve does not exhibit the characteristics
illustrated in Fig. 5 and Fig. 9. The orange dots show the REI case where
the sand reference state patterns were used as the training data set. The
green dots show the REI case where the 304L-SS reference state patterns
were used as the training data set. Both REI cases show minimal changes
as the sand sample is subject to compressive loads up to catastrophic
failure of the material system.



Fig. 10 shows the stress–strain curve and associated REI for

an aggregate of sand subject to compression. The dotted

yellow curve shows the stress–strain curve of sand aggregate in

uniaxial compression. The in situ mechanical loading proce-

dure was similar to the one described by Hurley et al. (2017).

The sample fractured catastrophically when compressed

beyond 75 MPa. The sample also does not exhibit the elastic,

elastic–plastic transition and plastic regimes that were

observed in the 304L-SS (Fig. 5) and CP-Ti (Fig. 8) samples.

Instead, the stress–strain curve shows a constant increase and

an abrupt decrease in applied stress indicative of catastrophic

failure. We consider two REI cases similar to Fig. 9. For REI

case 1 (green dots), the image representation and clustering

models are trained using the 304L-SS reference state patterns.

For REI case 2 (orange dots), these models are trained using

the sand reference state patterns. In both cases, the hyper-

parameters were optimized on the basis of the 304L-SS

patterns. While the absolute magnitudes are different, the two

REI cases show minimal changes with respect to loading. This

implies that the underlying architecture in our rare event

detection framework is tuned to detect anomalies in diffrac-

tion spots induced by crystallographic slip, but it is insensitive

to deformation carried out by the fracturing of grains.

3.4. Robustness to experiment configurations

We have demonstrated that REI is sensitive to changes in

polycrystalline metals due to plasticity, but experiment

configurations can also lead to changes in REI. Here, we

investigate the sensitivity of REI to different configurations

during the 304L-SS experiment in Section 3.1. Fig. 5 includes

data collected with the following configuration: 0.4 mm X-ray

beam height, rotation angle start at � 180�, rotation angle step

0.25�. This was the reference state for computing the absolute

change in REI (�REI). Table 3 shows �REI as a result of

different changes in experiment configurations. For each

�REI calculation, the material deformation state was

constant, and only the corresponding experiment configura-

tion was changed.

Changes in the starting rotation angle and rotation angle

step change the position and slicing of diffraction spots (3D)

on individual frames (2D). Since our model works with

diffraction signals on individual frames instead of 3D shapes,

these changes are expected to change REI as well. (Using 2D

spots instead of 3D allows for improvements in computation

speed and working with streaming data.) Table 3 shows that

changing the starting rotation angle (offsets of �0.125�,

�0.25�, �0.314� and �0.628� in starting rotation angle were

used) has the smallest influence on REI. We will use this

�REI as a baseline (denoted �REIb) to compare against

other experimental parameters. Changing the rotation angle

step (0.1� versus 0.25�) has more than three times larger �REI

than �REIb.

Changing the position of data acquisition in the sample

(four different positions) results in two times larger �REI

than �REIb. This is attributable to local changes in the

microstructure at any given sample state. On the other hand,

changes in other experiment configurations (with different

positions in the sample) lead to more than four times higher

�REI compared with �REIb: four times for changing X-ray

beam size (0.1, 0.2 and 0.4 mm), five to ten times for using sub-

optimal incident X-ray flux for low and high plastic defor-

mation,3 4 and about six times higher for changing both X-ray

beam size and flux.

Furthermore, for the titanium data set (Fig. 8) the change in

REI near 0.1 strain by �1.3 � 10� 2 is because the vertical

X-ray beam size was changed from 0.4 to 0.2 mm.

�REI for detecting the onset of plastic deformation in Fig.

5 is 1.38 � 10� 2, the difference between REI of two sample

states in the purple ellipse. From Table 3, we can see that only

changes in the starting rotation angle and position in the

sample yield a �REI smaller than this value. This indicates

that an experiment utilizing REI as an indicator can vary these

two experiment configurations, namely, starting rotation angle

and position in the sample, but must keep the other experi-

ment configurations constant during the experiment: rotation

angle step, X-ray beam size and X-ray beam flux. Conversely,

REI can be a useful metric to detect unwanted changes to or

drift from the experimental configuration.

3.5. REI using a partial data set

The ability to monitor the material state changes and

provide actionable information in real time predicates having

sufficient frames to extract reliable REI quickly. To estimate

the minimum number of detector frames necessary to provide

a reliable REI, we used the FF-HEDM patterns from the

304L-SS sample acquired over an ! range of 360�. For the FF-

HEDM patterns acquired at a given target load level:

(i) A starting ! angle (or a frame in the stack of FF-HEDM

patterns acquired over an ! range of 360�) is chosen randomly.

(ii) A contiguous segment of frames corresponding to a

particular �! range starting from the chosen ! angle is

extracted from the FF-HEDM patterns.

(iii) REI for the contiguous segment is computed.

(iv) This procedure is repeated 20 times with random

starting ! angles to estimate the range of REI values arising

from using a partial FF-HEDM pattern set.
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Table 3
Sensitivity to experiment parameters.

Experiment change �REI (�10� 2) Average REI (� )

Different starting rotation angle 0.52 0.27

Different rotation angle step 1.7 0.28
Different position 1.1 0.31
Different position and X-ray beam size 2.1 0.28
Different position and X-ray beam flux 2.7 0.29
Different position and X-ray beam flux,

large plastic deformation
5.2 0.52

Different position, X-ray beam size and

beam flux

2.9 0.27

3 Here, optimal incident X-ray flux is the setting in which the full dynamic
range of the area detector is utilized without acquiring saturated pixels during

a FF-HEDM scan; sub-optimal incident X-ray flux means the dynamic range
of the detector is under-utilized.
4 High local microstructure changes from deformation also contribute to high
�REI.



Fig. 11 presents a magnified view of the elastic and elastic–

plastic transition regime for �! of 5� (orange dots), 10� (blue

dots), 20� (purple dots), 40� (black dots) and full 360� FF-

HEDM patterns (green dots). The REI error bars show the

range of REI values computed from 20 repeats. For clarity, the

REI values are intentionally shifted by � 0.1, 0.0, 0.1, 0.2 and

0.3 for �! of 360, 5, 10, 20 and 40�, respectively. Table 4 shows

the REI calculation time for each �! case.

In all four �! cases where a partial data set is used, the

overall trends in REI are consistent with those observed when

the full data set is used to compute REI. Smaller �! results in

larger REI error bars, most likely due to limited sampling and

scatter in the FF-HEDM patterns. Nevertheless, the REI

computed from �! of 40� is very close to the benchmark REI.

This implies that it is not necessary to acquire and analyze a

full FF-HEDM data set acquired over an ! range of 360� to

compute a reliable REI. Furthermore, when combined with

the REI calculation time (Table 4), this observation shows that

experimenters can consider a new mode of FF-HEDM data

acquisition where the sample is continuously rotated and

loading is not paused (the sample geometry and loading rate

need to be moderated to a level that matches the diffraction

pattern acquisition and REI determination rates) and

diffraction patterns are streamed without pausing. (Such

experimental modality will also require a stage stack that

allows continuous ! rotation such as the RAMS load frame or

one that employs a slip ring system.) Given the quick turn-

around time for REI calculation, continuous quasi-static or

cyclic loading can be possible. As diffraction patterns are

streamed, REI can also be streamed concurrently to provide a

scalar actionable quantity to the experimenters to steer the

course of the in situ experiment. This loading modality cannot

be realized easily with a conventional metric such as FWHM

or lattice strain (Fig. 5) which requires a full reconstruction or,

at the minimum, diffraction peak fitting.

3.6. REI with continuous loading

As alluded to in Section 3.5, the ability to compute reliable

REI from a partial FF-HEDM data set allows a new loading

modality where loading is not paused during an in situ FF-

HEDM. We deploy our rare event detection framework on a

previously published FF-HEDM data set that employed this

loading modality (Pagan et al., 2017) to quantify the crystal-

lographic slip strength and study microcrack initiation and

propagation in a Ti-7 Al alloy. The experimental setup and

sample geometry are similar to those used for the CP-Ti data

presented in Section 3.2. Another key difference to note in

this FF-HEDM data set is that the ! scan was broken up into

six 60� segments so as to test both the continuous loading

modality and partial data REI.

Fig. 12 shows the macroscopic stress–strain curve, REI

values computed over the course of the in situ FF-HEDM and

incident X-ray flux. As anticipated, the rare event detection

framework can capture the elastic–plastic transition from a

partial FF-HEDM data set, as indicated by the large increase

in REI when the material transitions into the plastic regime.

Furthermore, our rare event detection framework can detect

changes in the incident X-ray flux. For instance, the REI

research papers

1168 Weijian Zheng et al. � Rapid detection of rare events using machine learning J. Appl. Cryst. (2024). 57, 1158–1170

Figure 11
The in situ stress–strain curve and REI evolution computed using partial
data sets for the 304L-SS sample in the elastic and elastic–plastic tran-
sition regime. For clarity, the REI values are intentionally shifted by � 0.1,
0.0, 0.1, 0.2 and 0.3 for �! of 360, 5, 10, 20 and 40�, respectively.

Table 4
REI calculation time for each �! case.

Patch extraction time is computed assuming 0.25� ! steps when acquiring FF-
HEDM patterns and 20 frames per second processing time on the computing

infrastructure used for this work.

�! (�) Time for patch extraction (s) Time for REI calculation (s)

5 1 0.31
10 2 0.33

20 4 0.35
40 8 0.41
360 (full) 72 1.2

Figure 12
The Ti-7 alloy was continuously deformed in uniaxial tension while FF-
HEDM patterns were acquired. REI shows significant changes in three
different ways. It increases significantly when the material undergoes
elastic–plastic transition. It also changes when the incident flux changes
significantly; an example of such an instance is highlighted by the purple
ellipses. Furthermore, REI is sensitive to a gradual decay in the incident
X-ray flux; an example of such an instance is highlighted by the dotted
green (incident flux) and blue lines (REI).



values increase significantly with a large increase in the inci-

dent flux, measured by an ion chamber installed in the X-ray

beam path immediately before the sample (purple ellipse in

Fig. 12). We also observed an REI decay consistent with the

incident beam flux decay associated with the 324 singlets (non

top-up) APS storage ring operation modality when this data

set was acquired. This trend is highlighted by the blue and

green dotted arrow lines for REI and incident flux, respec-

tively.

This application example shows that our rare event detec-

tion framework can track changes to the diffraction peaks

induced by crystallographic slip and can detect small changes

to the incident beam flux. This is particularly useful for newer

FF-HEDM modes that require much longer scan time (on the

order of several hours) such as stitching HEDM (Johnson et

al., 2023) (where multiple field-of-view scans across a sample

cross section are stitched to interrogate a sample cross section

larger than the beam size available at the endstation) or point

focus HEDM (Li et al., 2023) (where multiple scans across a

sample cross section are conducted with a 2D focused beam to

acquire intra-granular microstructure and micromechanical

state information). REI can be an independent metric indi-

cating changes to the FF-HEDM patterns due to incident

beam characteristic changes or material state changes (such as

creep or relaxation) during these scanning techniques.

4. Outlook

We have demonstrated that our rare event detection frame-

work can detect changes to the FF-HEDM diffraction peaks

due to material state change and instrument changes such as

incident flux and beam size. This framework is based on the

unsupervised image representation learning and clustering

algorithms. The resulting REI can be a metric that experi-

menters can use to make informed decisions about the course

of their in situ FF-HEDM experiment instead of relying solely

on a conventional stress–strain curve. Continuous loading

combined with in situ FF-HEDM can be more accessible as

experimenters do not have to rely on full reconstructions to

decide on when to stop the loading and deploy higher-reso-

lution techniques.

The rare event detection framework presented in this work

can inform the experimenter when a possible rare event is

occurring. Yielding in a uniaxial tension experiment is an

eventuality but a ‘rare’ event with regard to when and where it

occurs. If the rare event detection framework can detect where

in the microstructure an anomaly is occurring, it will be an

additional piece of information that experimenters can use to

steer their experiment. There are several avenues to identi-

fying the location. For instance, it can be accomplished by

creating a subset of patches from a particular set of grains of

interest and only monitoring the REI from those grains.

It is also noteworthy that several petabytes of FF-HEDM

data from more than a decade of user operation at the APS

1-ID beamline cover many alloy systems and multi-axial

loading paths. We intend to use these data sets to further

evaluate our rare event detection framework and report on

the findings in the near future.

5. Code and data availability

The data used here are archived on the APS Data Manage-

ment System and available on request. The code is available

on request.
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