Journal Title

XX(X):1-14

©The Author(s) 2016

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Designing a Parallel Feel-the-Way
Clustering Algorithm on HPC Systems*

Weijian Zheng', Dali Wang?, Fengguang Song'

Abstract

This paper introduces a new parallel clustering algorithm, named Feel-the-Way clustering algorithm, that provides
better or equivalent convergence rate than the traditional clustering methods by optimizing the synchronization
and communication costs. Our algorithm design centers on how to optimize three factors simultaneously: reduced
synchronizations, improved convergence rate, and retained same or comparable optimization cost. To compare the
optimization cost, we use the Sum of Square Error (SSE) cost as the metric, which is the sum of the square distance
between each data point and its assigned clusters. Compared with the traditional MPI k-means algorithm, the new Feel-
the-Way algorithm requires less communications among participating processes. As for the convergence rate, the new
algorithm requires fewer number of iterations to converge. As for the optimization cost, it obtains the SSE costs that are
close to the k-means algorithm. In the paper, we first design the full-step Feel-the-Way k-means clustering algorithm
that can significantly reduce the number of iterations that are required by the original k-means clustering method. Next,
we improve the performance of the full-step algorithm by adopting an optimized sampling-based approach, named
reassignment-history-aware sampling. Our experimental results show that the optimized sampling-based Feel-the-Way
method is significantly faster than the widely used k-means clustering method, and can provide comparable optimization
costs. More extensive experiments with several synthetic datasets and real-world datasets (e.g., MNIST, CIFAR-10,
ENRON, and PLACES-2) show that the new parallel algorithm can outperform the open source MPI k-means library by
up to 110% on a high performance computing system using 4,096 CPU cores. In addition, the new algorithm can take
up to 51% fewer iterations to converge than the k-means clustering algorithm.

Keywords
Parallel machine learning algorithms, communication and synchronization reducing, distributed clustering methods,
high performance computing

1 Introduction to design communication-reducing and synchronization-

reducing algorithms Frommer and Szyld (2000); Demmel

High-performance computing (HPC) and machine learning
(ML) have been widely adopted by both academia and
industries to address the enormous data problems at extreme
scales. Research has been reported on the interactions
of HPC and machine learning, however, achieving high
performance and scalability for parallel and distributed
machine learning algorithms is still a challenging task. This
paper takes the k-means clustering method as an example to
introduce a new type of parallel machine learning algorithms,
named Feel-the-Way algorithms. The k-means clustering
method is one of the most widely used big data analysis
methods due to its effectiveness, clean and simple design Jain
etal. (1999); Hartigan and Hartigan (1975). It is used to solve
global optimization problems by pushing each point towards
a local minimum repeatedly. Similar to many other machine
learning methods (e.g., random search based methods and
generalized descent methods), the clustering methods are
also affected by local minima, convergence rate, seeding,
parameter staleness, quality of the solution, and computation
and communication costs.

One of the key factors to achieve high performance on
extreme-scale HPC systems is to reduce the communication
cost and the synchronization cost associated with the parallel
algorithms. Researchers have conducted extensive studies

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

et al. (2008); Bru et al. (1988); Song et al. (2010); Demmel
and Dinh (2018). While these algorithms can reduce the
communication cost and synchronization cost, they can also
cause slower convergence rates, lower quality of solutions,
or even divergence Ho et al. (2013); Tallada (2016); Zheng
et al. (2017); Shi et al. (2016). Consequentially, the overall
execution time of the modified parallel algorithm has
prolonged because the increased number of iterations (i.e.,
slower convergence) overwhelm the benefits of improved
performance per iteration.

Feeling intrigued by this problem, we strive to study
whether we can design a new type of machine learning
algorithms that can not only reduce the synchronization and
communication cost but also achieve better convergence. Our
goal is to find the best combination of these two factors:

"Department of Computer Science,
University Indianapolis, Indiana
20ak Ridge National Laboratory, Tennessee

Indiana University-Purdue

Corresponding author:
Fengguang Song, Indiana University-Purdue University Indianapolis
Email: fgsong@cs.iupui.edu

The new algorithms can attain minimized synchronizations
meanwhile achieving the same or faster convergence rate.

To that end, we design the new type of Feel-the-Way
algorithms. The motivation of the algorithms is that each
machine learning process behaves like a hiker who is trying
to “cross an unknown river by touching or feeling the rocks
in the riverbed, and thinking of both speed and safety.” In
such a metaphor, the current rock is the safe “harbor” for
which a person can always come back even though all the
surrounding rocks don’t work out well. Also when many
persons (i.e., processes in the algorithm) are crossing the
same river, information sharing from time to time will lead to
a better solution faster. Following this philosophy, we design
the so-called Feel-the-Way algorithms.

In the Feel-the-Way algorithm that is applied to k-means
clustering as an example, each process undertakes a part
of the dataset, and runs L local steps before synchronizing
its local solution with other processes. The novelty of the
Feel-the-Way algorithm lies in that we view the first step
as the “safe” point and the rest L-1 steps as opportunities
to enhance the first step. The rationale is that the solution
from the first step is always a “decent” candidate for the
global solution. If the second, third, ..., or L-th step has
a better optimization cost than the first step, it implies
that the Feel-the-Way algorithm has successfully reduced
synchronizations and communications, meanwhile achieving
a better cost than the original synchronous algorithm.

In general, the best of the L candidates will be at least as
good as the original synchronous algorithm in terms of the
optimization cost and the convergence rate. Considering an
extreme case, even if all the local steps between the second
and the L-th make the cost worse than the first step, the final
overall cost can still be close to the synchronous first-step-
only ML method because the first step will be the “winner”
as selected by the Feel-the-Way algorithm.

Our first attempt to realize the algorithm shows promising
results. Experiments in Section 7.2 demonstrate that using
L=5 can reduce the average number of iterations from 61
to 10 with the MNIST dataset. However, we need to solve
the following challenge: the time spent on the second to the
L-th local steps must be significantly short to reduce the
total execution time. Otherwise, the saved iterations may be
overwhelmed by the time spent on the second to L-th local
steps. Hence, we consider the second to L-th local steps as
the cost we pay in order to reduce the number of iterations.

In order to reduce the time spent on the second to L-th
steps, we use a number of sampling methods to avoid re-
clustering all the data points multiple times. Based on our
analysis, not every point is reassigned in every local step.
Five sampling methods have been designed and compared
with each other: 1) Random sampling, 2) a new max-min
sampling, 3) a new coefficient of variation (CV) sampling,
4) Heap sampling Kurban and Dalkilic (2017), and 5) a
new reassignment-history-aware sampling method. These
five sampling methods have different time complexities
and distinct efficiencies on convergence. All the sampling
methods are controlled by a sampling rate r, and each
local step may use a different sampling rate. Eventually, we
call the new ML algorithm “sampling-based Feel-the-Way
algorithm”. To differentiate from the original algorithm, we

refer to the original algorithm (i.e., without sampling) as
“full-step Feel-the-Way algorithm”.

We have designed and implemented sequential algorithms
for both the full-step Feel-the-Way algorithm and the
sampling-based Feel-the-Way algorithm. The sequential
algorithms partition the input dataset into a number of data
blocks, each with an equal number of data points. Then the
algorithms apply L local steps to each data block. Every
local step executes the k-means clustering method for one
iteration upon the data block. After all data blocks have been
computed, the data blocks’ centers will be merged to get new
global centers. Note that the sampling-based algorithm only
computes a sampled subset of points during the second to L-
th local steps, but computes all points in the first local step.
After verifying the correctness of the sequential algorithms,
we design and develop a parallel sampling-based Feel-the-
Way algorithm using the hybrid MPI/Pthread programming
model. In the parallel implementation, every thread works
on its own subset of data blocks, and merges its centers with
other threads’ centers once every L steps.

We conduct a number of experiments with multiple
synthetic datasets and real-world datasets of MNIST,
CIFAR-10, ENRON, and PLACES-2 on HPC computers.
We evaluate the new algorithm with respect to performance,
convergence rate, and accuracy. The metric of performance
is measured by the wall-clock execution time. Convergence
rate is measured by the number of iterations the algorithms
take to converge. Finally, accuracy is measured by the Sum
of Squared Error (SSE) cost that measures the differences
between each point and its center within each cluster.

The experimental results show that the new reassignment-
history-aware sampling method is more effective than the
other sampling methods, and the new parallel Feel-the-
Way algorithm can outperform the open source MPI k-
means library from Northwestern University Liao (2017)
significantly. To the best of our knowledge, this paper makes
the following main contributions:

1. We propose a full-step Feel-the-Way algorithm and
a sampling-based Feel-the-Way algorithm (in both
sequential and parallel implementations) to reduce
synchronizations at the same time achieving as good
as or better convergence rates.

2. We design a variety of sampling methods, among
which we introduce the most effective reassignment-
history-aware sampling .

3. Our experiments with real-world datasets demonstrate
that the type of Feel-the-Way algorithms can reduce
the number of synchronizations but without slowing
down the convergence rate, which has been scarcely
studied.

2 Related work

In this section, we list the related work in four categories:
1) parallel clustering algorithms, 2) existing software that
supports clustering, 3) different asynchronous methods, and
4) relevant sampling methods.

Clustering algorithms: The k-means clustering method
is one of the most widely used data mining algorithms. One
type of clustering work tries to avoid computing the distance
between points and the new centers. For instance, triangle

equality based methods, such as Moore (2000), Elkan (2003)
and Hamerly (2010), can eliminate the distance computation
by applying geometry knowledge. Elkan’s algorithm Elkan
(2003) uses the extra information of inter-center distances to
decide whether a new point-to-center distance computation
is necessary. Another type of work focuses on using tree-
based (e.g., kd-tree, anchor hierarchy) data structures to
achieve faster indexing and computations Alsabti et al.
(1997); Kanungo et al. (2002); Pelleg and Moore (1999).
To obtain high performance on large datasets, researchers
have also done extensive research on parallel clustering
algorithms, which include MapReduce based algorithms
Zhao et al. (2009); Jin et al. (2016), and MPI based
algorithms Kerdprasop and Kerdprasop (2010); Kantabutra
and Couch (2000); Dhillon and Modha (2002). In our work,
we use the hybrid MPI/Pthread programming model to
implement the new parallel sampling-based Feel-the-Way
algorithm.

Existing clustering software: There are a number of
Python libraries for k-means and other machine learning
algorithms such as Scikit-learn Pedregosa et al. (2011),
Orange Demsar et al. (2013), Mlpy Albanese et al. (2012)
and Pylearn2 Goodfellow et al. (2013). These libraries
mainly target programmer productivity instead of high
performance, especially on distributed memory systems.
There are also machine learning frameworks such as Mahout
Apache Mahout (2017), Spark MLIlib MLIib (2017), Google
TensorFlow Abadi et al. (2016), GraphLab Low et al. (2012)
and Amazon AML Amazon Machine Learning (2017). They
provide high productivity by using Python or Java on
Cloud platforms. Unfortunately, their performances are still
suboptimal on HPC systems. For instance, Alex et al. found
that Spark has significant runtime overhead (e.g., inter-
stage barrier, task start delay, etc.) compared to MPI-based
software Gittens et al. (2016). Differently, we focus on high
performance and design a new parallel clustering algorithm
for HPC systems using MPI and Pthread.

Asynchronous methods to reduce communications:
Communication reduction has drawn a lot of attention
from researchers when designing parallel machine learning
algorithms. The lazy synchronization method has been
applied to many machine learning algorithms. The basic idea
is to allow all tasks to execute independently and have a
lesser need for synchronization. In the work of Di Fatta
et al. (2013), each computer independently computes its
local points’ assignment and centers. Hsieh et al. (2014)
and You et al. (2015) accelerate SVM by asynchronously
training models on each partition of the data. Several general
purpose machine learning frameworks also support lazy
synchronization Ho et al. (2013); Li et al. (2014); Low et al.
(2012); Tallada (2016)

However, the lazy synchronization method often leads
to slower convergence and lower accuracy due to using
stale parameters. A few studies have investigated the issue
Ho et al. (2013); Li et al. (2014); Zheng et al. (2017).
Xing et al. studied machine learning applications that
use the stochastic gradient descent (SGD) method, and
adaptively change the SGD step size to compensate for errors
caused by stale synchronizations Ho et al. (2013). They
have implemented asynchronous data communication using
parameter servers. Furthermore, Zheng et al. (2017) employ

simulated annealing to accelerate k-means clustering and
offer the same quality as the synchronous clustering method.

We share the same philosophy of minimizing synchroniza-
tions with the existing work, but besides reducing commu-
nication, we also target how to design new approaches to
preventing convergence rates from getting slower.

Related sampling methods: A number of sampling
based methods have been developed to cluster large scale
datasets faster. A simple approach is to find the clustering
centers based on a small set of data points. The work
of Sculley (2010) randomly selects a small number of
data points from each batch in every iteration. Similar
approaches have been introduced by Havens et al. (2012);
Har-Peled and Mazumdar (2004); Chitta et al. (2011).
Chen and Cai (2011) and Wang et al. (2011) also apply
the sampling ideas to the spectral and pairwise clustering
algorithms. Kurban and Dalkilic (2017) design the heap
sampling method, and apply it to k-means clustering and
achieve higher performance. Another approach prunes away
irrelevant and redundant dimensions from data points to
improve performance Elankavi et al. (2017).

In this paper, we design and test five different sampling
methods and incorporate them (as a submodule) into our
new parallel Feel-the-Way algorithm. The Feel-the-Way
algorithm is a hybrid of sampling algorithm and the original
synchronous clustering algorithm. It is able to obtain almost
the same optimization cost as the original k-means. In
addition, we compare the heap method with our new
reassignment-history based sampling method, and show that
the reassignment-history-aware method can result in a better
convergence rate than the heap method.

3 The Full-Step Feel-the-Way Algorithm

This section introduces the proposed full-step Feel-the-Way
algorithm, which works on blocks of data points and applies
local optimizations to each individual block iteratively. Each
block of data points will be optimized by a number of L local
steps without triggering any communication.

The algorithm consists of three functions: 1) The local
optimization function that optimizes each data block; 2) the
merge function that derives the global clustering centers from
different blocks; and 3) the main function that controls when
to stop the algorithm. The rest of the section will introduce
the three functions in details.

3.1

Underlying data structure: We use a simple blocked data
layout to store the input dataset. Each data point is a vector
with m attributes. Assuming we have n data points, a
dataset can be viewed as an n X m matrix. In our algorithm,
we divide the matrix into blocks of rows, where each
block represents a set of b consecutive data points. This
blocked data structure is used to implement our Feel-the-Way
algorithms.

The local optimization function is responsible for reducing
each individual block’s optimization cost. The basic idea is
as follows: we run one step of the synchronized k-means
algorithm (i.e., the original k-means), then we run L-1
asynchronous steps upon each block. The additional L-1

Local optimization function

Algorithm 1 Function of Local Optimization.

Algorithm 2 Full-Step Feel-the-Way Algorithm

1: /= Local optimization on one block */
2: local_optimization_block(points, g_centers,
3: g-centers_size, membership, L)

4: 1 =0 /= 1is the current step */
5: whilel < L — 1do
6: blk_cost_old = blk_cost_new; blk_cost_new = 0;
7: blk_local_sum = 0; blk_local_size = 0;
8: > stage 1: Use the global centers as a new seed for O step
9: if (I = 0) then centers < g_centers; end if
10: > stage 2: Use all local points to improve centers
11: for each point i in points do
12: > stage 2.1 find the closest center for point i
13: (dist, new_center) <— find_nearest_center(points[i], centers);
14: membership[i] = new_center;
15: > stage 2.2 update each block’s partial sum and size
16: blk_local_sum[new_center] += points[i];
17: blk_local_size[new_center]+=1;
18: blk_cost_new += dist;
19: end for
20: > stage 2.3: Recalculate new centers and new cost
21: for each center ¢ do
22: centers[c] = blk_local_sum[c] / blk_local _size[c];
23: end for

24: if (I = 0) then Ist_step_cost <— blk_cost_new; end if
25: l++;

26: end while

27: > stage 3: Returns if L steps are finished

28: return {blk_local_sum, blk_local size, 1st_step_cost}

steps on each block are designed to reduce each block’s SSE
(Sum of Squared Error) cost monotonically.

In Algorithm 1, we present the pseudocode of the local
optimization function, which goes through three stages.
Stage I: Set the current block’s clustering seed as the newly
merged global centers. Stage 2: Use the current block’s
data points to improve the block’s clustering cost. In stage
2.1, find the closest center for each data point; In stage
2.2, compute each block’s local centers’ sizes and sums
of coordinates; In stage 2.3, calculate new local centers.
Stage 3: The local optimization function returns updated
clustering results after a number of L local steps have been
applied to the current block. Note that we need to keep the
first step’s cost, which is just equal to the SSE cost from the
previous global iteration.

3.2 The merge function

After calling the local optimization function, each data block
has its own set of centers. Therefore, N data blocks will
have N set of centers. Given each data block’s local_sum,
local _size and a new cost local_cost, the merge function will
add them together to get the global sum and global size,
respectively. The new global centers are then computed by
dividing global_sum by global _size.

3.3 The main function

Algorithm 2 shows the main function of the full-step Feel-
the-Way algorithm. It calls the previous local optimization
and the merge functions. As shown in the algorithm, it
first selects k points as the initial seed. Next, it iteratively
optimizes each data block and aggregates each clustering
center’s size and coordinate sum (i.e., lines 10-18). After all
the data blocks have been processed once, the new global
centers can be computed (i.e., lines 20-22). Here, we use the

1: /* m : number of points , n_b: number of blocks */
2: /x k centers , L: the limit for number of local steps */
3: Feel_the_Way_clustering(points, m, n_b, k, L)
4: /* Set the initial k centers */
5: pre_g_cost_new = MAXIMUM
6: repeat
7: /* Store the previous iteration’s info */
8: g_size_old = g_size_new; g_size_new = 0; g_sum_new = 0;
9: pre_g_cost_old = pre_g_cost_new; pre_g_cost_new = 0;
10: for each blocki <— Oton_b- 1 do
11: /* Run local optimization on each block */
12: (local_sum, local_size, pre_local_cost) <—
13: local_optimization_block(i-th block, g_centers,
14: g_size_old, membership, L);
15: /*Merge each block’s coordinate sum into global sum*/
16: (g-sum_new, g_size_new, pre_g_cost_new) <—
17: merge(local_sum, local_size, pre_local_cost);
18: end for
19: /* Compute new global centers */
20: for each center ¢ do
21: g_centers[c] = g_sum_new[c] / g_size_new/[c];
22: end for

23: until pre_g_cost_old - pre_g_cost_-new < threshold

~
S
-
N~

[== MPI K-means

-\-\'-\—<

L ®Full-step Feel-the-Way

H Full-step Feel-the-Way ® MPI K-means

@
S
-

#iterations
w B
8 &8 &

[
o

I
S

N
S
Relative performance
14
£

,_.

15
e
N

o
o

2 3 4 5
L steps (within each iteration)

(b) SYN (speedup)

3 4
L steps (within each iteration)

(a) SYN (iterations)

Figure 1. Comparison between the full-step Feel-the-Way
algorithm and the MPI k-means algorithm.

SSE cost as the program’s stop condition in order to achieve
a minimal SSE cost.

4 Sampling-Based Feel-the-Way Algorithm

In this section, we first analyze the performance of the full-
step Feel-the-Way algorithm. Next, we extend it to a new
sampling-based Feel-the-Way algorithm, which is motivated
by the unscalable performance of the full-step algorithm,
In the end, we design and compare five different types of
sampling approaches.

4.1 Motivation for a new sampling-based

Feel-the-Way algorithm

We use a synthetic dataset SYN (described in Table 5)
to evaluate the performance of the full-step Feel-the-
Way algorithm and the MPI k-means algorithm. Table 1
shows their corresponding SSE costs, which are within 1%
difference. Also, Figure 1.a shows the number of iterations
and Figure 1.b shows their relative performance. For all the
MPI k-means experiments, we use the open source Parallel
K-means Data Clustering Library, which was developed by
Northwestern University Liao (2017). In this paper, we refer
to the open source clustering library as MPI k-means.
Figure 1l.a reveals that the full-step Feel-the-Way
algorithm can significantly reduce the number of iterations.

Table 1. Costs of the MPI k-means and Full-step Feel-the-Way
experiments, whose performance are shown in Figure 1.

Dataset L=2 L=3 L=4 L=5
SYN 6.3433e9 6.3443¢9 6.3451e9 6.3464¢9
k-means cost: 6.2645¢9

For instance, MPI k-means has 63 iterations while the full-
step Feel-the-Way has 17 iterations when L=5.

In Figure 1.b, however, we find that the full-step Feel-
the-Way is not faster than MPI k-means, even though Feel-
the-Way has a less number of iterations than k-means. The
reason is that the time spent between the second and L-
th local step is expensive, which eventually becomes larger
than the benefit of the saved iterations. Later in Lemma 1,
we prove that the full-step Feel-the-Way algorithm becomes
slower than k-means if it takes more than 7 iterations to
converge, where m is the number of iterations that the k-
means algorithm takes.

Puzzled by the problem, we hope to create a new
algorithm, which ideally spends little or no time on the local
steps (from the second to the L-th steps), at the same time
reducing the number of iterations. Our in-depth analysis of
point reassignments between different clusters finds that, not
all data points have been reassigned to a distinct cluster.
Moreover, fewer and fewer data points are reassigned from
the first iteration to the last iteration. As shown in the
following Figure 2, we measure the number of reassigned
data points at each iteration on MNIST dataset using MPI k-
means. We can observe that the number of reassigned points
decrease from 60,000 to 0.

100000 -
10000 [~
1000 -~

100

Number of reassigned points

10 [

1

1 11 21 31 41 51 61 71 81
Iteration

Figure 2. Number of reassigned data points with the MNIST
dataset using the k-means at each iteration. K-means needs 89
iterations.

By intuition, if we could just pick up those reassigned
points (and skip those unchanged points), the Feel-the-Way
algorithm can certainly run much faster. To that end, we
introduce different sampling methods to the full-step Feel-
the-Way algorithm’s local steps to intelligently select a
small portion of points to compute clustering, rather than
considering all points (as done by the full-step Feel-the-Way
algorithm).

4.2 Design of the algorithm

The main function of the sampling-based Feel-the-Way
algorithm is almost the same as the full-step Algorithm 2
except we introduce a new local optimization function.

The new local optimization function is presented in
Algorithm 3. In line 9, the algorithm checks whether it has
visited enough data points or not. In line 10, only the sampled
points will be selected to compute clustering. From line 11 to

line 14, each sampled point is reassigned to its closest center,
and those consequentially affected cluster’s coordinate sum
and number of points are updated accordingly. Note that this
algorithm considers all the points when it is the first local
step, as stated in line 10.

The essence of the Feel-the-Way algorithm is to use
the first local step to emulate the original synchronous k-
means algorithm, and use the rest of L — 1 local steps to
improve the cost of the first local step. In addition, the
sampling algorithm utilizes the first local step to compute
the global SSE cost for all blocks of points, and determines
which points should be sampled based upon the reassignment
statistics of the first local step. Furthermore, the blk_local-
sum and blk_ local_size do not need to be reset to zero in
every new local step. Instead, they will be quickly updated
based on the previous local step.

4.3 Development of five sampling methods

We develop five different sampling methods. These sampling
methods utilize two types of information: 1) the distance of
a data point to each center: near or far; and 2) the history
of previous steps that reassign certain points to different
centers.

The five sampling methods are described as follows:

1. Random sampling: This is the simplest one. It just
randomly selects a subset of data points.

2. Max-min sampling: For each data point, we compute
its distances to the k clustering centers, respectively.
Then we compute its Max-min ratio (i.e., % .
Those points that have smaller Max-min values will
be selected as the sampling points. It is based on an
assumption that if a data point is equally close to all k
centers, it is more likely that this point will change its
nearest center.

Algorithm 3 Sampling Version of the Local Optimization
Function

1: /* Local optimization on one block */

2: local_optimization_block(points, g_centers,

3 g_centers_size, membership, L, max_sample_points)

4: 1=0 /x1is the current step */

5: whilel < L —1do

6: /*same as lines 6-9 of Algorithm 1 */

7

8

> stage 2: Use sampled local points to improve centers
for each point i in points do

9: if (sampled_points > max_sample_points) then break; end if
10: if (point i is sampled or local_step = 0) then
11: sampled_points = sampled_points + 1;
12: > stage 2.1 find the closest center for point i
13: (dist, new_center) <— find_nearest_center(points[i], centers);
14: membership[i] = new_center;
15: > stage 2.2 update each block’s partial sum and size
16: blk_local_sum[new_center] += points[i];
17: blk_local_size[new_center]+=1;
18: if ({ !'=0) then
19: blk_local_sum[old_center] -= points[i];
20: blk_local_size[old_center]-=1;
21: end if
22: end if
23: end for

24: /*same as lines 20-25 of Algorithm 1 */

25: end while

26: 1> stage 3: Returns if L steps are finished

27: return {blk_local_sum, blk_local_size, 1st_step_cost}

3. Coefficient of Variation (CV): CV is defined as
W. Each data point has k distances to k
centers, respectively. This method computes the CV
of those k distances. A small CV value reveals that the
distances of the point to all k centers are almost the
same. Hence, those points that have smaller CVs will
be selected because we anticipate that a point with the
same distances to all centers is likely to be reassigned
soon (i.e., unsettled yet).

4. Heap sampling: Heap-based sampling was introduced
by Kurban and Dalkilic (2017). The heap-based
method maintains a heap data structure for each center
to store the distances between the center and its data
points. The farthest data point is stored at the top of the
heap (similar to heap sorting). When doing sampling,
it always selects the points that are at the high levels
of the heap. The heap-based method assumes that the
points that are far from their belonging center will
switch to a new center soon.

5. Reassignment-history-aware sampling: This is a new

sampling method proposed by us. Reassignment-
history-aware sampling keeps track of which data
points have been reassigned in the past. If a point
was assigned to a new center in the previous step, we
consider it as a good sampling candidate based on the
assumption that it is a “hot” point and will change to
a new center again in the current step. In fact, we have
observed this behavior in our clustering experiments,
where “hot” points are indeed unsettled.
If there are m points that have been reassigned to new
centers in the previous step, we will randomly pick s
sample points from the set of m points. Usually m is
larger than s. s can be either a constant or decided by a
sampling ratio. When m becomes too small (e.g., less
than 20), we will choose all m points as the sampling
points.

Time complexity of the sampling methods:

Suppose each sampling method needs to select s sample
points from each data block, given k centers and each
data block with b points, we list the time complexities
of all the sampling methods in Table 2 For the
Random and Reassignment-history-aware methods, their
time complexities are equal to s x O(1). For the Max-
min and CV sampling methods, we invoke the QuickSelect
algorithm Hoare (1961) s times to find the best points. Since
QuickSelect has an average time complexity of O(b). The
overall time complexity is O(sb) for the Max-min and CV
methods. As to the Heap method, it takes O(logb) x s to
maintain a heap data structure.

Table 2. Time complexity of different sampling methods.

Random | Max-min Heap CvV Reassignment-
history-aware
O(s) O(sb) O(slogb) | O(sb) O(s)

5 Parallel Implementation

We have implemented the Feel-the-Way algorithm on
distributed-memory multicore HPC systems using the hybrid
MPI/Pthread programming model. Algorithm 4 essentially

parallelizes Algorithm 2 by distributing data blocks across
MPI processes and then Pthreads. As shown in Algorithm 4,
the parallel program executes the following three steps:

1. Processes read and distribute data: As shown in lines
5-13, the root process will first distribute the dataset
by reading a file and sending data points to the other
processes. Assume there are m data points and P
processes, each process will take m/P data points.
Then, each thread will obtain its data points according
to the block size B. As shown in line 20, given T'
threads per process, each thread will get m/B/P/T
blocks.

2. Each thread executes the local_optimization_block()
kernel: As shown in line 22, each thread will optimize
its own blocks of data points sequentially by calling
Algorithm 3.

3. Merge the results of each thread: Finally, all the results
from different threads will be merged. In this step,
the algorithm uses a multilevel merging method to
compute the global centers. All the blocks within
a thread will be merged in the first level to obtain
the thread-local results. Next, in the second level, all
results from different threads within the same process
will be merged to obtain the process-local results.
At the last level, different processes will merge their
results to obtain the global centers and cost. The global
cost will be used to decide whether the algorithm
should terminate or not.

6 Theoretical Analysis

The previous sections 3 and 4 have presented how the full-
step and sampling based Feel-the-Way algorithms work. In
this section, we will analyze the algorithms in order to
answer two questions: 1) How can we compute the new SSE

Algorithm 4 Parallel sampling-based Feel-the-Way cluster-
ing algorithm

1: parallel_feelway_clustering(points, m, B, k, threshold, P, T)
2: /x B: block size */

3: /* P: #MPI processes; T: #threads/process */

4: > Read and distribute data points

5: if pid == 0 then

6: n_b =m/B/P; /*#blocks per process*/

7 Read a file and send a subset of data points to each process
8: /* select first k data points as initial cluster centers */

9: for each center ¢ <— O to k-1 do

10: g_centers[c] = points[c]

11: end for

12: Broadcast g_centers to the other processes

13: else

14: Receive a subset of points from PO, stored in points_proc
15: end if

16: g_cost_-new = MAXIMUM

17: repeat

18: > Each process has T threads
19: for each thread tid <— 0 to T do

20: Distribute points_proc to each thread, stored in points_thrd

21: Call local_optimization_block() kernel on tid’s own points_thrd.
22: end for

23: g_cost_old = g_cost_new

24: Merge all processes’ results and compute g_cost_new

5: until g_cost-old - g_cost_-new < threshold

cost correctly by only considering a set of sampling points?
2) In what conditions will the Feel-the-Way algorithm be
faster than the conventional k-means method?

6.1

For each local step ! that requires sampling points (i.e.,
le{l...L—1}), we need to compute the new SSE cost
at the end of the [-th step. Note that we cannot recompute
every point’s distance to its center due to its expensive cost,
which would make the sampling algorithm have the same
time complexity of the full-step algorithm.

In order to compute a new SSE cost by considering only
the small subset of sampling points, we divide the SSE
cost computation into two parts: 1) SSE cost related to the
sampled points, and 2) SSE cost related to the unsampled
points.

Suppose V represents all the points in a data block, and
S and U represent sampled points and unsampled points,
respectively, where V = SUU.

Also suppose cost(.S) is the SSE cost of the sampled point.
It can be easily computed or updated whenever a sampled
point is reassigned to the closest center.

The SSE cost of unsampled points (i.e., cost(U)) is more
complex and can be computed as follows. The basic idea is
that we utilize the old SSE cost of unsampled data points
cost(U)o1q to compute the new cost of unsampled data
points. More specifically, given a set of centers C' from the
previous local step, after re-clustering, we get a new set
of centers C’. For unsampled data points U, we keep their
coordinates sums and the number of points attached to each
center from the previous step, denoted as sum and size.

Provided o; = C] — C;, where C; is the i-th center, then
the corresponding SSE cost computation can be expressed by
the following formula:

Fast SSE cost computation

cost(V') = cost(U) + cost(S)

k
= cost(U)1q — 2 Z(suml —size; - C;) - oy
i=1
k
+ Z(sizei(ai -0;)) + cost(S)
i=1

)]

6.2 Speedup analysis for the full-step and
sampling-based Feel-the-Way algorithms

Lemma 1. Assume it takes m and n iterations for the k-
means and the full-step Feel-the-Way algorithm to converge.
Let Ty, —means and Tyii—step be the computation time of the
k-means and full-step Feel-the-Way algorithm, respectively.
If’I’L < %7 then Tfullfstep < Tk —means:

Proof. Assume each iteration takes time t,

Tx—means > Tfull—step = tXm>tXxXnx L (2)

= m>nx1L
Thus, when n S %’ Tf’u.ll—step S Tk—means-

Theorem 1. Assume it takes m and n iterations for k-
means and the sampling-based Feel-the-Way algorithm to

converge. Suppose the sampling Feel-the-Way algorithm
uses a sampling ratio of . Let Ti_means and Tsqmpie be
the computation time of the k-means and sampling-based
Feel-the-Way algorithm, respectively. If n < ﬁ then
Tsample < Tk —means

Proof. Assume the time for each iteration is t

Tk—means = Tsample = tXxm > (t+(L—1)xrxt)xn
= m>nx(1+(1-1)xr)
3)
Thus, Tsampie < Thk—means When n < ﬁ
Theorem 1 reveals that the speedup of the sampling-based
Feel-the-Way over k-means is determined by the reduced
number of iterations, the number of local steps, and the
sampling ratio. For instance, if we choose L =2 and a
small sampling ratio r, the sampling-based algorithm will be
faster than k-means as long as the Feel-the-Way algorithm
has fewer iterations. Experimental results in Section 7.2
demonstrate the speedup of the sampling-based Feel-the-
Way algorithm, in which r=1%.

7 Experimental Results

In this section, we will show three sets of experimental
results with both synthetic and real-world datasets to
evaluate the performance of our algorithms: 1) Evaluation
of the effectiveness of different sampling methods; 2)
Performance comparison between an open source MPI k-
means library, the full-step, and the sampling-based Feel-the-
Way algorithms in terms of wallclock time and number of
iterations; and 3) Scalability experiments with our parallel
implementation on thousands of CPU cores. In all the
experiments, we use double-precision floating point numbers
and 32-bits integers to perform computations.

The open source MPI k-means library: The MPI k-
means library was developed at Northwestern University
Liao (2017). Since the MPI library only computes single-
precision floating numbers and does not terminate the
algorithm based on the SSE cost, we modify the source code
slightly to make a fair comparison with our algorithms. The
following three parts have been revised. Also, readers can
find the revised source code at https://github.com/
zwj3652011/MPI_kmeans.git

1. Single precision to double precision: Single-precision
floating numbers are used by the original MPI k-
means library. However, our software uses double-
precision floating point numbers. Thus, we convert the
single-precision numbers in the MPI library to double
precision numbers.

2. Stop condition is now decided by the SSE cost: In the
original MPI k-means library, the algorithm will stop
when there are very few data points whose assignment
is still changing. Our algorithm will stop when the SSE
cost cannot be significantly reduced. We change the
stop condition of the MPI k-means library to use the
SSE cost. Thus, by setting the same stop condition
threshold, our algorithm and the MPI k-means library
can obtain comparable SSE costs.

https://github.com/zwj3652011/MPI_kmeans.git
https://github.com/zwj3652011/MPI_kmeans.git

3. A new input function to read dataset files: For certain
data formats that are not supported by the MPI k-
means library (such as the document dataset used in
our experiments), we have developed a new input file
reader to support the formats.

HPC platform: We performed experiments on the BigRed
II system located at the Indiana University. BigRed II is
a Cray XE6/XK7 HPC system, which consists of 1,020
compute nodes. Each compute node has two 16-core CPUs
and 64GB of memory. Table 3 shows detailed information
about the system.

Different datasets: Our experiments use four real-world
and two synthetic datasets. Table 4 describes the four real-
world datasets: MNIST, CIFAR-10, ENRON, and PLACES-
2. MNIST is a well-known dataset for hand-writing digit
recognition LeCun et al. (1998). CIFAR-10 is used for object
recognition with 60,000 color images Krizhevsky and Hinton
(2009). PLACES-2 is generated from Places 2 Zhou et al.
(2016), which is a large collection of images from different
scenarios. ENRON is a set of documents and used in the
email classification research area Klimt and Yang (2004).

In addition, our experiments use two synthetic datasets.
Table 5 shows the two synthetic datasets, which are named
SYN and SYN-Large. The synthetic datasets are generated
using different Gaussian distributions, for which the interval
between each center coordinate value is set to 100 and the
radius of center coordinate value is set to 50. The steps
of generating synthetic dataset is as follows: 1) Generate
a random number using a uniform distribution and decide
the membership for this data point. Each data point has 1/k
possibility of assigning to one of the centers. 2) Based on
the Gaussian distribution, we will generate a random number
r for each data points at every coordinate. 3) Then, the
value of radius, interval and R will be used to decide the
corresponding coordinates value. The value will be ranged
from interval — radius to interval + radius. 4) Finally,
repeat the previous three steps until we have generated
enough data points.

In all the experiments that execute the Feel-the-Way
algorithms, we use five different clustering seeds and
report the average of their measured performance in our
performance figures.

Table 3. The BigRed Il Supercomputer.

Nodes 1,020

Memory per node 64 GB
Processors per node 2

Cores per processor 16

Max cores per job 4,096

Processor AMD Opteron 6380 2.5GHz
Interconnect Cray Gemini

MPI Cray-MPICH 7.2.5

Table 4. Description of the real-world datasets.

MNIST CIFAR-10 ENRON PLACES-2
#clusters (K) 10 10 10 10
#Data points 60,000 60,000 38,400 1,024,000
#Coordinates 784 3,072 28,102 2,048
Dataset size 110MB 626MB 24.7TMB 3.25GB

Table 5. Description of the synthetic datasets.

SYN SYN-Large
#clusters (K) 10 20
#Data points 6,400 409,600
#Coordinates 1,024 2,048
Dataset size 50.48MB 7.06GB

7.1

Since the effectiveness of a sampling approach determines
the performance of the sampling-based Feel-the-Way
algorithm, we compare and evaluate five different sampling
methods: 1) Random, 2) Max-min, 3) Coefficient of
Variation (CV), 4) Heap, and 5) Reassignment-history-aware
method (in short, Reassign-hist).

In the following subsection, we first use the Reassign-hist
method as an example to illustrate how a sampling ratio can
affect the convergence rate and execution time. Next, we use
a fixed small ratio of 1% to compare five sampling methods.

Effect of the sampling ratio on performance: We use
the sampling ratio to control how many data points should
be considered to compute new clustering centers. If the
sampling ratio is equal to p%, p% of the total number of
points will be accessed by the algorithm.

Evaluation of Different Sampling Methods

70
mm Sampling-based Feel-the-Way (iterations)

| -&-Sampling-based Feel-the-Way (time) 16

titerations
w &
o o

Time (s)

001 0.1 0.2 03 04 05 06 07 08 09 1
Sampling ratio

Figure 3. Effect of the sampling ratio with the MNIST dataset
using the Reassign-hist sampling method. MPI k-means needs
89 iterations.

Table 6. SSE costs corresponding to the sampling-ratio
experiments that are shown in Figure 3.

dataset: MNIST
k-means 1.5302 x 1011
0.01 (Sample ratio) 0.1 (Sample ratio)
1.5358 x 1017 1.5362 x 1011
Sampling- 0.2 0.3 0.4
based 1.5340 x 10T | 1.5338 x 10T [1.5337 x 10'T
method 0.5 0.6 0.7
(Reassign | 1.5336 x 10T | 1.5335 x 1011 | 1.5330 x 10TT
-hist) 0.8 0.9 1.0
1.5329 x 10T | 1.5329 x 10T [1.5328 x 1011

Figure 3 shows that both the number of iterations and
the execution time change as the sampling ratio increases
from 1% to 100% for the MNIST dataset. Here we use the
Reassign-hist sampling method and set L =4 to test the
Feel-the-Way algorithm. Regarding the number of iterations,
when the sampling ratio = 1%, Feel-the-Way takes 58
iterations. The number of iterations then drops from 58, 49 to
29 as the ratio rises from 1%, 10% to 80%. Eventually, when

o
IS
I~
9
S

035 .

= 100
@ 03 = — =——
5 g 985 o o
€0.25 o 2 g o
T g2 @Reassign-hist <oHeap = 60 3
2 ey @Random 3 B 8
E015 ' sMaxmin = o
& 01 @Reassign-hist oHeap
o °
bs 20 ey @Random
0.05 — <+Max-min
0 : 0 .
2 3 a4 5 3 4
L steps (within each iteration) L steps (within each iteration)
a.l MNIST (sample hit rate) a.2 MNIST (iterations)
0.4 70
035 @Reassign-hist OHeap 60
e
g 02 Acv CRandom 50 \Q\E__J
L0 4Max-min g 4 B & A A
3% R =
Bo1s 830 S~ —
E £ o o
& 01 20 EReassign-hist ©Heap o
0.05 10 ACV ORandom
0 #Max-min

2

5 2 3 4
L steps (within each iteration)

c.2 ENRON (iterations)

3 4
L steps (within each iteration)

c.1 ENRON (sample hit rate)

70
0.35 BReassign-hist OHeap 60 F:FFS
& o3 ACV ORandom v
2025 . 5 50 o— 8-
2 #Max-min 2
Z o2 40 " B—]
_E-o,ls %30 BReassign-hist ©OHeap
8 o1 '\g\ o ¢ 20 ACV DRandom
0.05 ’\’\'\’ﬁ 10 #Max-min
0 0 0 .
2 3 4 3 4
L steps (within each iteration) L steps (within each iteration)
b.1 SYN (sample hit rate) b.2 SYN (iterations)
04 180
0.35 160
@ 03 140
€025 -\-\I\- E 0 a
= N 2 100 o o
T g2 @Reassign-hist OHeap s S
% ACV ORandom :‘:‘ 80 M@Reassign-hist OHeap
E018 *Max-min ° o £ 6 ACV ORandom
@ 01 S 40 ®Max-min
0.05 20
0 H g i~ -~ o R e
2

2 3 4 5
L steps (within each iteration)

d.2 CIFAR-10 (iterations)

3 5
L steps (within each?teration)

d.1 CIFAR-10 (sample hit rate)

Figure 4. Comparing five sampling methods with four different datasets: a) MNIST, b) SYN, c¢) ENRON, d) CIFAR-10.

Table 7. Costs of different sampling methods for MNIST.

Table 8. Costs of different sampling methods for SYN.

Sampling L=2 L=3 L=4 L=5 Sampling L=2 L=3 L=4 L=5

methods methods

Reassign | 1.5334ell 1.5337el1 1.5358el1 1.5376el1 Reassign 6.3821e9 6.3918e9 6.4059¢9 6.4215e9
Heap 1.5328el1 1.533el1 1.5333el1 1.5336el1 Heap 6.4070e9 6.3971e9 6.4389¢9 6.4569¢9

CvV 1.5327ell | 1.5327ell 1.5327el1 1.5327el1 CcvV 6.3470e9 6.3469¢9 6.3469¢9 6.3469¢9

Random 1.5327el1 1.5327el11 1.5327el1 1.5327el1 Random 6.3449¢9 6.3449¢9 6.3449¢9 6.3449¢9

Max-min | 1.5327ell 1.5327ell | 1.5327ell | 1.5327ell Max-min 6.3446¢€9 6.3447¢9 6.3447¢9 6.3447¢9

k-means 1.5302el1 k-means 6.2645¢9

the sampling ratio is equal to 100%, we see a significant
reduction in the number of iterations. This experiment tells
us that given a specific sampling method, reducing the
sampling ratio may not necessarily increase the number of
iterations significantly (e.g., 20%, 1% have nearly the same
number of iterations).

Regarding execution time (see the y-axis on the right),
it increases gradually as the sampling ratio increases. For
instance, the execution time jumps from 8 seconds to 16
seconds when the ratio rises from 1% to 70%. This is because
a larger sampling ratio implies a larger time complexity
for each local step [(I =2,3,4). Theorem 1 proves the
relationship between time and the number of iterations given
a specific L and sampling ratio.

To provide a complete picture, Table 6 also provides the
SSE costs associated with an arrange of sampling ratios used
by Figure 3. We can see that the SSE costs of using different
sampling ratios are almost the same when the Reassign-hist
sampling method is used.

Reason to use a small sampling ratio: We choose to use
a small sampling ratio of 1% for the following reasons. 1) It
will lead to a small overhead (around 1%) to compute the
local steps I € {2... L}. 2) In combination with the first full
step [= 1, the sampling-based Feel-the-Way algorithm can
achieve a less number of iterations than k-means (e.g., 58
iterations on average versus MPI k-means’ 89 iterations, as
shown in Figure 3).

Comparing the five sampling methods: We evaluate
which sampling method provides the best performance based
on two metrics: accuracy and the number of iterations.
1) Accuracy. If a sampling method selects s data points,

Table 9. Costs of different sampling methods for ENRON.

Sampling L=2 L=3 L=4 L=5

methods

Reassign 2.3041e7 2.3039¢7 2.3041e7 2.3040e7
Heap 2.3156e7 2.3184e7 2.3432¢7 2.3470e7

Ccv 2.2872e7 2.2872e7 2.2872e7 2.2872¢7

Random 2.2974e7 2.2972e7 2.2972e7 2.2972¢e7

Max-min 2.2773e7 2.2880e7 2.2963e7 2.2958¢e7

k-means 2.2882¢7

Table 10. Costs of different sampling methods for CIFAR10.

Sampling L=2 L=3 L=4 L=5

methods

Reassign 4.740e11 4.741ell 4.744¢e11 4.745el11
Heap 4.852el1 5.018el1 5.093el1 5.181el1

(6% 4.739%11 4.739%11 4.739%11 4.740el11

Random 4.739%11 4.739%11 4.73911 4.739%11

Max-min 4.738el1 4.739%11 4.738ell 4.739%11

k-means 4.7355el1

we measure how many points of the selected points have
really been assigned to a different cluster (e.g., i points
switched clusters). We use % to represent the accuracy of
the sampling method. We call it “Sampling Hit Rate”. The
higher the sampling hit rate, the better the sampling method
is. 2) The number of iterations. This metric measures how
many iterations are needed by the Feel-the-Way clustering
algorithm to converge.

Figure 4 shows the experimental results with four datasets:
a) MNIST, b) SYN, c) ENRON, and d) CIFAR-10. For each
dataset, we measure the Sampling Hit Rate and Number of
Iterations for five sampling methods, respectively. Note that
Sampling Hit Rate and Number of Iterations are displayed

separately in two subfigures such as a.l and a.2 for MNIST,
b.1 and b.2 for SYN, and so on.

As shown in Figure 4 a.l, the Reassign-hist method has
the highest sampling hit rate (around 33% when L = 2 and
3). Then its hit rate drops to 30% and 25% when L =4
and 5. The second best sampling methods are the Heap and
Max-min methods, which have a hit rate of 8%. The last two
methods (Random and CV) achieve the lowest sampling hit
rates that are always less than 5%.

With respect to the convergence rate, Figure 4 a.2 shows
that the Reassign-hist method converges the fastest, taking
around 50 iterations. By contrast, the Random sampling
method takes 80 iterations, and the CV, Max-min sampling
methods take around 90-100 iterations. The Heap sampling
method converges slow when L = 2, then starts to converge
faster when L is bigger. Note that the sampling method
that has a higher hit rate is more likely to converge faster.
Also, the SSE costs corresponding to Figure 4 a.1 and a.2’s
experiments are shown in Table 7, whose costs are close to
each other.

Figure 4 b.1 shows the sampling hit rates of different
methods for the SYN dataset. When L > 2, the Heap method
is as good as the Reassign-hist method. The CV and Random
methods have the lowest sampling hit rate. Correspondingly,
Figure 4 b.2 shows that the Reassign-hist method and Heap
method have the smallest number of iterations. Costs of all
experiments are almost the same, as presented in Table 8.

Figure 4 c.1 and c.2 show the experimental results
for the ENRON dataset. The Reassign-hist method has a
significantly higher hit rate than the other sampling methods.
Please note that when L = 5, the Heap method takes fewer
iterations to converge than the Reassign-hist, but its SSE cost
is 2% larger than the Reassign-hist method as shown in Table
9.

Figure 4 d.1 and d.2 show the experimental results for the
CIFAR-10 dataset. Again, The Reassign-hist method is better
than the Heap method, which is better than the CV, Max-
min, and Random methods. However, Figure d.2 shows an
exception, where the Heap sampling method has the smallest
number of iterations. For this case, we find that its SSE cost
is larger than that of the Reassign-hist method by up to 9% as
shown in Table 10. This is the reason that the Heap method
takes fewer iterations to reach a less optimal solution.

In general, the Reassign-hist sampling method is the most
effective method with a higher sampling hit rate and a
less number of iterations in most cases. In the following
experiments, we will use the Reassign-hist method to show
the performance of the Feel-the-Way algorithm.

7.2 Sequential performance of the full-step
and sampling-based Feel-the-Way

In the second set of experiments, we compare the
performance of MPI k-means, full-step Feel-the-Way, and
sampling-based Feel-the-Way clustering algorithms. We
use three real-world datasets (i.e., MNIST, CIFAR-10
and ENRON) and one synthetic dataset to compare the
algorithms.

Figure 5 shows four groups of subfigures: a, b, ¢, and
d, which correspond to four datasets, respectively. The first
subfigure in a group shows the number of iterations (i.e.,

10

Table 11. SSE costs for the experiments that are shown in
Figure 5. The first sub-row is used for the sampling-based
algorithm. The second sub-row is for the full-step algorithm. The
third sub-row is for the MPI k-means library.

Dataset L=2 L=3 L=4 L=5
1.5334el1 1.5337el1 1.5358el1 1.5376el1
a) MNIST 1.5327el1 1.5328el1 1.5328el1 1.5329¢11
1.5302¢el1
6.3443¢9 6.3443e9 6.3451e9 6.3464¢9
b) SYN 6.3821e9 6.3918¢9 6.4059¢9 6.4215e9
6.2645¢9
2.2944¢7 2.2950e7 2.2950e7 2.2952¢7
¢) ENRON | 2.2897e7 2.2828e7 2.2793e7 2.2858¢e7
2.2882¢7
4.7309el1 | 4.7348ell | 4.7352ell | 4.7353ell
d) CIFARI10| 4.7296ell | 4.7300ell | 4.7301ell | 4.7304ell
4.7331ell

convergence rate), while the second subfigure shows the
relative performance speedup over the MPI k-means. The
average costs of all experiments are presented in Table 11.

Figure 5 a.1 and a.2 show the performance with MNIST.
In Subfigure a.1, the full-step Feel-the-Way algorithm has
the least number of iterations because it is able to utilize its
L number of local steps to improve the cost. The sampling-
based Feel-the-Way algorithm has the second least number
of iterations due to using a small portion (i.e., 1%) of
sampled points. For instance, when L is equal to 5, sampling-
based and full-step Feel-the-Way take an average number of
43.4 and 19.6 iterations to converge. By contrast, the MPI k-
means library takes 89 iterations to converge using its default
seeds.

In Figure 5 a.2, we show the speedup of the Feel-the-
Way algorithms relative to the MPI k-means library. Speedup
is computed by the division of two algorithms’ execution
time. The higher the number, the better the performance is.
Thanks to the small sampling overhead of the sampling-
based algorithm, the sampling based Feel-the-Way is faster
than the full-step Feel-the-Way by up to 2.2 times although
it requires more iterations to converge (as shown in subfigure
a.1). Also, it is faster than the MPI k-means library by up to
1.8 times.

Figure 5 b shows the performance comparison with the
SYN dataset. In the figure, the sampling-based Feel-the-Way
algorithm has the second least number of iterations, and the
best speedup, which outperforms the MPI k-means library by
1.5 times.

Similarly, Figure 5 ¢ shows the performance with the
ENRON dataset. The full-step Feel-the-Way algorithm is
faster than the MPI k-means by up to 2.26 times, and the
sampling-based Feel-the-Way algorithm is faster than the
MPI k-means by 3.28 times.

In Figure 5 d that corresponds to the experiments with
the CIFAR-10 dataset, the sampling-based Feel-the-Way
algorithm attains speedups between 1.06 and 1.1 over the
MPI k-means library.

[=== MPI K-means

= Full-step Feel-the-Way

‘-"‘l»
20 - -aSampling-based Feel-the-Way

#iterations
@
3
I)

Relative performance

3 4
L steps (within each iteration)

a.1 MNIST (iterations)

60 7 MPI K-means

50 I _asampling-based Feel-the-Way

40 | *Full-step Feel-the-Way

#iterations

3 4 5
L steps (within each iteration)

c.1 ENRON (iterations)

2 [mSampling-based Feel-the-Way
M Full-step Feel-the-Way
B MPI K-means

"
«

o
@

2 3 4
L steps (within each iteration)

a.2 MNIST (speedup)

»
@

W Sampling-based Feel-the-Way
B Full-step Feel-the-Way
B MPI K-means

IS

€ [[nd w
chmiuNnGLwn

Relative performance

o

2 3 4 5
L step (within each iteration)

c.2 ENRON (speedup)

#iterations
[]

#iterations

[---"MPI K-means

10 | *Sampling-based Feel-the-Way
&Full-step Feel-the-vyay

5

Relative performance
N

=
«

e
@

3 4 5
L steps (within each iteration)

b.1 SYN (iterations)

""MPI K-means

[
S

8
/
¥

N
S

[--Sampling-based Feel-the-Way
“Full-step Feel-the-Way

®
3 8
]
/
/
/
/
/
/
/
/
o
;
/
/
/
/
Relative performance

e 2 9 9 ¥
2 ® m N

o N

3 a4
L steps (within each iteration)

d.1 CIFAR-10 (iterations)

W Sampling-based Feel-the-Way
M Full-step Feel-the-Way
B MPI K-means

3 4
L steps (within each iteration)

b.2 SYN (speedup)

= Sampling-based Feel-the-Way
H Full-step Feel-the-Way
B MPI K-means

3 4
L steps (within each iteration)

d.2 CIFAR-10 (speedup)

Figure 5. Effect of L steps on 3 algorithms (Sampling-based, Full-step, MP| k-means) with 4 datasets

Table 12. Parameter setting for the scalability experiments

shown in Figure 6.

dataset block size sampling L steps
ratio
ENRON 1,200 0.01 4
CIFAR-10 468 0.01 3
SYN-Large 100 0.01 2
PLACES-2 250 0.01 2

10000 1000

1000
100

o
3
8
8
34k
/48
ap BE
af [
8 2
8 =
w S
9 »
® 5
5
o
Time (s)

Time (s)
n
1
3

323 10

#Sampling-based Feel-the-Way
®MPI K-means
. .

®#MPI K-means

16 32 64 128

1 2 4 8 16 32 1 2 4 8

#eores #eores

(2) ENRON (b) CIFAR-10
1000 1000
289.7
100 100 1223
z z
o @
£ £
F P
10 10
#Sampling-based Feel-the-Way -aSampling-based Feel-the-Way ;3 28
®MPI K-means ®MPI K-means 21
1 , ! ! ,
32 64 128 256 512 1024 2048 4096 32 64 128 256 512 1024 2048 4096
#eores #eores

(c) SYN-Large (d) PLACES-2

Figure 6. Strong scalability experiments. The y-axis is shown in
the logarithmic scale.

7.3 Performance of the parallel sampling
based Feel-the-Way algorithm

To evaluate the performance of our parallel Feel-the-Way
implementation, we perform large scale experiments on Big
Red IT using thousands of CPUs. In the parallel experiments,
we take four datasets as input: ENRON, CIFAR-10, SYN-
Large, and PLACES-2. We also use different block sizes and
L steps, and set sample ratios to 1% for different datasets, as
reported in Table 12.

Figure 6 shows the results of the strong scalability
experiments, where we increase the number of CPU cores

11

Table 13. SSE costs for the strong scalability experiments

shown in Figure 6.

dataset k-means Sampling-based
Feel-the-Way

ENRON 2.2882 x 107 2.2951 x 107
CIFAR-10 4.7331 x 1011 4.7355 x 1011
SYN-Large 7.5308 x 1011 7.6992 x 1011
PLACES-2 5.4261 x 1012 5.4226 x 1012

given a fixed input size. In addition to displaying execution
time, we also use Table 13 to show the SSE costs that
are achieved by our Feel-the-Way algorithm and the MPI
k-means library. From Table 13, we can see that the cost
difference between MPI k-means and our algorithm is always
small.

Figure 6.a displays the execution time of the MPI k-means
library and our sampling-based Feel-the-Way algorithm with
the ENRON dataset. As the number of CPU cores increases
from 1 to 32, the parallel Feel-the-Way reduces the execution
time from 709.6 to 32.3 seconds while the MPI k-means
reduces from 1,222.8 to 105.9 seconds. We also notice that
as the number of CPU cores increases from four to eight,
the MPI k-means library does not scale very well. Our
performance analysis found that the time spent on each
iteration is almost identical when using four cores and eight
cores. Also, this inefficiency only happens to the ENRON
dataset from four to eight CPU cores when using the MPI
k-means library.

Figure 6.b displays the execution time when taking
the CIFAR-10 dataset. On 128 CPU cores, our parallel
implementation is faster than the MPI k-means by 32%.

In Figure 6.c, we use 4,096 CPU cores to compute the
SYN-Large dataset. From the subfigure c, we can see that the
parallel Feel-the-Way implementation reduces the execution
time from 214.7 to 2.5 seconds using 4,096 cores, which is
faster than the MPI k-means by 110%.

As for the PLACES-2 dataset, Figure 6.d shows that
the parallel sampling-based Feel-the-Way implementation is
able to reduce the execution time from 202.3 to 2.1 seconds
when using from 32 to 4,096 CPU cores. Again, the parallel

[=== MPI K-means

® Sampling-based Feel-the-Way
= Full-step Feel-the-Way
B MPI K-means

8

..

#iterations

Relative performance

-#-Sampling-based Feel-the-Way

[-=Full-step Feel-the-Way

2 3 4
L steps (within each iteration)

a.2 MNIST (speedup)

3 4
L steps (within each iteration)

a.1 MNIST (iterations)

#iterations

== MPIK-means

® Sampling-based Feel-the-Way
M Full-step Feel-the-Way
B MPI K-means

w
S &
=

Foo T o
-a-Sampling-based Feel-the-Way

[®Full-step Feel-the-Way

Relative performance

4

2 3 4
L steps (within each iteration)

b.2 SYN (speedup)

3 4
L steps (within each iteration)

b.1 SYN (iterations)

Figure 7. Effect of L steps on three algorithms (Sampling-based, Full-step, MP| k-means), which are tested with two datasets
(MNIST, SYN) using single-precision floating-point numbers.

Table 14. SSE costs for the single-precision floating-point
number experiments as shown in Figure 7. The first sub-row is
used for the sampling-based Feel-the-Way algorithm. The
second sub-row is for the full-step Feel-the-Way algorithm. The
third sub-row is for the MPI k-means library in single precision.

Dataset L=2 L=3 L=4 L=5
1.5334el1 1.5337el1 1.5358el1 1.5376¢el1
a) MNIST 1.5327el1 1.5328el1 1.5328el1 1.5329¢el11
1.5302el1
6.3821e9 6.3897¢9 6.3996e9 6.406e9
b) SYN 6.3432¢9 6.3441¢9 6.3448¢9 6.3457¢9
6.2645¢9

Feel-the-Way program outperforms the MPI k-means library
by 33% on 4,096 cores.

7.4 Performance comparison using
single-precision floating-point numbers

We also use the MNIST and SYN dataset to evaluate the
performance of our algorithm and implementation using
single-precision floating-point numbers. The results of the
full-step and sampling-based Feel-the-Way algorithms are
averaged from five different sets of seeds.

Similar to the double-precision result shown in Figure 5
a.1, the full-step and sampling-based Feel-the-Way in single-
precision also take fewer number of iterations to converge
than the MPI k-means. In addition, the sampling-based Feel-
the-Way algorithm is 34% faster than MPI k-means when the
number of local steps L = 5, which is shown in Figure 7 a.1.

As to the dataset SYN in Figure 7 b.l and b.2,
the sampling-based Feel-the-Way achieves the speedups
between 1.29 and 1.44. To show the solution quality for the
above set of experiments, we also summarize their SSE costs
in Table 14. We can see that the Feel-the-Way algorithms
and k-means algorithm have comparable SSE costs. Also,
note that although the single-precision version of MPI k-
means converges faster than the double-precision version,
its accuracy may become worse. For example, the single-
precision output on the MNIST dataset is worse than the
double-precision with a higher SSE cost (1.530205e11 vs
double-precision’s 1.530179¢11).

8 Conclusion

In this paper, we presented a Feel-the-Way method to reduce
the synchronization cost of large-scale machine learning
algorithms without sacrificing the accuracy and convergence
rate. We applied this method to design and implement a fast
clustering algorithm for large-scale HPC systems. We first

12

designed a full-step Feel-the-Way algorithm that, compared
to the traditional k-means algorithm, takes significantly
less number of iterations by applying local optimization
to each data block, meanwhile providing almost the same
SSE cost as the MPI k-means library. Next, we introduced
different sampling methods to optimize the execution time
of the full-step algorithm and designed a new algorithm
called sampling-based Feel-the-Way. By sampling certain
“useful” data points, the new sampling-based Feel-the-Way
algorithm has a much better performance than the full-
step algorithm. Five sampling methods have been designed
and tested, among which the reassignment-history-aware
sampling method achieves the best convergence rate.

Our future work will focus on the application of the
parallel sampling-based Feel-the-Way method to design
and implement other advanced machine learning algorithms
(such as deep reinforcement learning and deep generative
models) on extreme-scale HPC systems.

Acknowledgements

This material is based upon research supported by the Purdue
Research Foundation, by the NSF Grant# 1835817, and by the
U.S. Department of Energy (DOE), Office of Science, Advanced
Scientific Computing Research Program.

References

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro
C, Corrado GS, Davis A, Dean J, Devin M et al. (2016)
Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467 .

Albanese D, Visintainer R, Merler S, Riccadonna S, Jurman G and
Furlanello C (2012) mlpy: Machine learning python. arXiv
preprint arXiv:1202.6548 .

Alsabti K, Ranka S and Singh V (1997) An efficient k-means
clustering algorithm .

Bru R, Elsner L and Neumann M (1988) Models of parallel chaotic
iteration methods. Linear Algebra and its Applications 103:
175-192.

Chen X and Cai D (2011) Large scale spectral clustering with
landmark-based representation. In: AAAI volume 5. p. 14.
Chitta R, Jin R, Havens TC and Jain AK (2011) Approximate
kernel k-means: Solution to large scale kernel clustering.
In: Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM,

pp- 895-903.

Demmel J and Dinh G (2018) Communication-optimal convolu-

tional neural nets. arXiv preprint arXiv:1802.06905 .

Demmel JW, Grigori L, Hoemmen MF and Langou J (2008)
Communication-optimal parallel and sequential QR and LU
factorizations. LAPACK Working Note 204, UTK.

Demsar J, Curk T, Erjavec A, Gorup C, Hogevar T, Milutinovig
M, Mozina M, Polajnar M, Toplak M, Stari¢ A et al. (2013)
Orange: data mining toolbox in python. The Journal of
Machine Learning Research 14(1): 2349-2353.

Dhillon IS and Modha DS (2002) A data-clustering algorithm on
distributed memory multiprocessors. In: Large-Scale Parallel
Data Mining. Springer, pp. 245-260.

Di Fatta G, Blasa F, Cafiero S and Fortino G (2013) Fault tolerant
decentralised k-means clustering for asynchronous large-scale
networks. Journal of Parallel and Distributed Computing
73(3): 317-329.

Elankavi R, Kalaiprasath R and Udayakumar DR (2017) A fast
clustering algorithm for high-dimensional data. International
Journal Of Civil Engineering And Technology (IJCIET) 8(5):
1220-1227.

Elkan C (2003) Using the triangle inequality to accelerate k-
means. In: Proceedings of the 20th International Conference
on Machine Learning (ICML-03). pp. 147-153.

Frommer A and Szyld DB (2000) On asynchronous iterations.
Journal of computational and applied mathematics 123(1):
201-216.

Gittens A, Devarakonda A, Racah E, Ringenburg M, Gerhardt
L, Kottalam J, Liu J, Maschhoff K, Canon S, Chhugani J
et al. (2016) Matrix factorizations at scale: A comparison of
scientific data analytics in Spark and C+MPI using three case
studies. In: 2016 IEEE International Conference on Big Data
(Big Data). IEEE, pp. 204-213.

Goodfellow 1J, Warde-Farley D, Lamblin P, Dumoulin V, Mirza
M, Pascanu R, Bergstra J, Bastien F and Bengio Y (2013)
Pylearn2: a machine learning research library. arXiv preprint
arXiv:1308.4214 .

Hamerly G (2010) Making k-means even faster. In: Proceedings
of the 2010 SIAM international conference on data mining.
SIAM, pp. 130-140.

Har-Peled S and Mazumdar S (2004) On coresets for k-means and
k-median clustering. In: Proceedings of the thirty-sixth annual
ACM symposium on Theory of computing. ACM, pp. 291-300.

Hartigan JA and Hartigan J (1975) Clustering algorithms, volume
209. Wiley New York.

Havens TC, Bezdek JC, Leckie C, Hall LO and Palaniswami M
(2012) Fuzzy c-means algorithms for very large data. IEEE
Transactions on Fuzzy Systems 20(6): 1130-1146.

Ho Q, Cipar J, Cui H, Lee S, Kim JK, Gibbons PB, Gibson GA,
Ganger G and Xing EP (2013) More effective distributed ML
via a stale synchronous parallel parameter server. In: Advances
in neural information processing systems. pp. 1223-1231.

Hoare CA (1961) Algorithm 65: find. Communications of the ACM
4(7): 321-322.

Hsieh CJ, Si S and Dhillon I (2014) A divide-and-conquer solver for
kernel support vector machines. In: International Conference
on Machine Learning. pp. 566-574.

Jain AK, Murty MN and Flynn PJ (1999) Data clustering: a review.
ACM computing surveys (CSUR) 31(3): 264-323.

Jin S, Cui Y and Yu C (2016) A new parallelization method for
k-means. arXiv preprint arXiv:1608.06347 .

13

Kantabutra S and Couch AL (2000) Parallel k-means clustering
algorithm on nows. NECTEC Technical journal 1(6): 243-247.

Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R
and Wu AY (2002) An efficient k-means clustering algorithm:
Analysis and implementation. [EEE Transactions on Pattern
Analysis & Machine Intelligence (7): 881-892.

Kerdprasop K and Kerdprasop N (2010) Parallelization of k-means
clustering on multi-core processors. In: Proceedings of the 10th
WSEAS international conference on Applied computer science,
ACS, volume 10. pp. 472-477.

Klimt B and Yang Y (2004) The enron corpus: A new dataset
for email classification research. In: European Conference on
Machine Learning. Springer, pp. 217-226.

Krizhevsky A and Hinton G (2009) Learning multiple layers of
features from tiny images .

Kurban H and Dalkilic MM (2017) A novel approach to
optimization of iterative machine learning algorithms: Over
heap structure. In: 2017 IEEE International Conference on Big
Data (Big Data). IEEE, pp. 102-109.

LeCun Y, Bottou L, Bengio Y and Haffner P (1998) Gradient-based
learning applied to document recognition. Proceedings of the
IEEE 86(11): 2278-2324.

Li M, Andersen DG, Park JW, Smola AJ, Ahmed A, Josifovski
V, Long J, Shekita EJ and Su BY (2014) Scaling distributed
machine learning with the parameter server. In: OSDI,
volume 14. pp. 583-598.

Liao W (2017) Parallel k-means data clustering for large
data sets. http://www.ece.northwestern.edu/
~wkliao/Kmeans/index.html.

Low Y, Bickson D, Gonzalez J, Guestrin C, Kyrola A and
Hellerstein JM (2012) Distributed GraphLab: a framework for
machine learning and data mining in the cloud. Proceedings of
the VLDB Endowment 5(8): 716-727.

MLIib (2017) http://spark.apache.org/mllib/.

Moore AW (2000) The anchors hierarchy: Using the triangle
inequality to survive high dimensional data. In: Proceedings
of the Sixteenth conference on Uncertainty in artificial
intelligence. Morgan Kaufmann Publishers Inc., pp. 397—405.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel
O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al. (2011)
Scikit-learn: Machine learning in python. Journal of machine
learning research 12(Oct): 2825-2830.

Pelleg D and Moore A (1999) Accelerating exact k-means
algorithms with geometric reasoning. In: Proceedings of the
fifth ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, pp. 277-281.

Sculley D (2010) Web-scale k-means clustering. In: Proceedings
of the 19th international conference on World wide web. ACM,
pp. 1177-1178.

Shi S, Wang Q, Xu P and Chu X (2016) Benchmarking state-
of-the-art deep learning software tools. In: 7th International
Conference on Cloud Computing and Big Data (CCBD). IEEE,
pp. 99-104.

Song F, Ltaief H, Hadri B and Dongarra J (2010) Scalable tile
communication-avoiding QR factorization on multicore cluster
systems. In: Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking,
Storage and Analysis (SC’10). pp. 1-11.

http://www.ece.northwestern.edu/~wkliao/Kmeans/index.html
http://www.ece.northwestern.edu/~wkliao/Kmeans/index.html
http://spark.apache.org/mllib/

Tallada MG (2016) Coarse grain parallelization of deep neural
networks. In: ACM SIGPLAN Notices, volume 51. ACM, p. 1.

Amazon Machine Learning (2017)
com/aml/details/.

Apache Mahout (2017) https://mahout .apache.org/.

Wang L, Leckie C, Kotagiri R and Bezdek J (2011) Approximate
pairwise clustering for large data sets via sampling plus
extension. Pattern Recognition 44(2): 222-235.

You Y, Demmel J, Czechowski K, Song L and Vuduc R (2015)
Ca-svm: Communication-avoiding support vector machines on
distributed systems. In: Parallel and Distributed Processing
Symposium (IPDPS), 2015 IEEE International. IEEE, pp. 847—
859.

https://aws.amazon.

14

Zhao W, Ma H and He Q (2009) Parallel k-means clustering based
on mapreduce. In: IEEE International Conference on Cloud
Computing. Springer, pp. 674—679.

Zheng W, Song F and Lin L (2017) Designing a synchronization-
reducing clustering method on manycores: Some issues and
improvements. In: Proceedings of the Machine Learning on
HPC Environments. ACM, p. 9.

Zhou B, Khosla A, Lapedriza A, Torralba A and Oliva A (2016)
Places: An image database for deep scene understanding. arXiv
preprint arXiv:1610.02055 .

https://aws.amazon.com/aml/details/
https://aws.amazon.com/aml/details/
https://mahout.apache.org/

	1 Introduction
	2 Related work
	3 The Full-Step Feel-the-Way Algorithm
	3.1 Local optimization function
	3.2 The merge function
	3.3 The main function

	4 Sampling-Based Feel-the-Way Algorithm
	4.1 Motivation for a new sampling-based Feel-the-Way algorithm
	4.2 Design of the algorithm
	4.3 Development of five sampling methods

	5 Parallel Implementation
	6 Theoretical Analysis
	6.1 Fast SSE cost computation
	6.2 Speedup analysis for the full-step and sampling-based Feel-the-Way algorithms

	7 Experimental Results
	7.1 Evaluation of Different Sampling Methods
	7.2 Sequential performance of the full-step and sampling-based Feel-the-Way
	7.3 Performance of the parallel sampling based Feel-the-Way algorithm
	7.4 Performance comparison using single-precision floating-point numbers

	8 Conclusion

