
S3LLM : Large-Scale Scientific Software Understanding
with LLMs using Source, Metadata, and Document

Kareem Shaik1, Dali Wang2, Weijian Zheng3, Qinglei Cao4,
Heng Fan1, Peter Schwartz2, and Yunhe Feng1

1 University of North Texas, Denton, TX 76207, USA
kareembabashaik@my.unt.edu,{heng.fan, yunhe.feng}@unt.edu

2 Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA {wangd,schwartzpd}@ornl.gov
3 Argonne National Laboratory, Lemont, IL 60439, USA wzheng@anl.gov
4 Saint Louis University, St. Louis, MO 63103, USA qinglei.cao@slu.edu

Abstract. The understanding of large-scale scientific software poses significant challenges
due to its diverse codebase, extensive code length, and target computing architectures. The
emergence of generative AI, specifically large language models (LLMs), provides novel path-
ways for understanding such complex scientific codes. This paper presents S3LLM , an LLM-
based framework designed to enable the examination of source code, code metadata, and
summarized information in conjunction with textual technical reports in an interactive, con-
versational manner through a user-friendly interface. S3LLM leverages open-source LLaMA-2
models to enhance code analysis through the automatic transformation of natural language
queries into domain-specific language (DSL) queries. Specifically, it translates these queries
into Feature Query Language (FQL), enabling efficient scanning and parsing of entire code
repositories. In addition, S3LLM is equipped to handle diverse metadata types, including
DOT, SQL, and customized formats. Furthermore, S3LLM incorporates retrieval augmented
generation (RAG) and LangChain technologies to directly query extensive documents. S3LLM
demonstrates the potential of using locally deployed open-source LLMs for the rapid under-
standing of large-scale scientific computing software, eliminating the need for extensive coding
expertise, and thereby making the process more efficient and effective. S3LLM is available at
https://github.com/ResponsibleAILab/s3llm.

Keywords: Large-Scale Scientific Software, Large Language Models, Research Software Analysis,
E3SM Land Model, Retrieval Augmented Generation (RAG), LLM, LLaMA, ChatGPT

1 Introduction

Large-scale scientific computing software is crucial in various scientific fields, undergoing extensive
development cycles that lead to the formation of intricate software libraries and ecosystems. This
complexity stems from the lengthy development periods, ongoing extensions, and evolving devel-
opment paradigms, making it imperative to provide users with insights into these computing tools.
However, understanding such software is a challenging task due to several factors. First, large-scale
scientific software often incorporates multiple programming languages, including older languages
such as Fortran and Pascal, which poses a significant challenge for contemporary programmers try-
ing to understand the code. Second, the large volume of scientific software, which may encompass
millions of lines of code, presents the obstacle to comprehensively understanding each segment of the

ar
X

iv
:2

40
3.

10
58

8v
1

 [
cs

.S
E

]
 1

5
M

ar
 2

02
4

https://github.com/ResponsibleAILab/s3llm

2 K. Shaik et al.

code. Lastly, the documentation for these software systems is sometimes less than ideal, often lack-
ing detailed explanations, which further complicates the task of gaining a thorough understanding
of the software.

To enhance comprehension of large-scale scientific software, numerous tools have been devised
to aid in code analysis and documentation. For instance, Doxygen [2] is capable of generating doc-
umentation and performing static code analysis for software source trees. Similarly, Sphinx [8] is
compatible with a wide range of programming languages, making it especially effective for pro-
ducing exhaustive documentation across various formats, including HTML, LaTeX (for printable
PDF versions), ePub, Texinfo, manual pages, and plain text. Nonetheless, the currently available
tools are primarily tailored for static code analysis and lack the capability to accommodate dy-
namic queries. Moreover, given the complexity inherent in large-scale scientific software, it poses
a significant challenge for both developers and users to formulate queries in both instructed (e.g.,
textural documents) and structured formats (e.g., SQL). Thus, it is imperative to devise methods
for understanding and parsing large-scale scientific software that are both user-friendly and precise.

The emergence of generative AI, particularly large language models (LLMs), heralds a new era
in software comprehension and interaction. LLMs have shown remarkable capabilities across various
tasks, including chatbot interactions [31,10,15], text summarization [25,12,29], and content creation
[9,17,18], demonstrating their potential to revolutionize programming and documentation practices.
Beyond these applications, LLMs offer promising solutions for navigating and understanding the
complex landscapes of large-scale scientific software [24]. By leveraging LLMs, we can envision a
future where software comprehension is not only more accessible but also more intuitive, enabling
users to query and interact with software in natural language. This paper introduces S3LLM , a
novel framework that embodies this vision, providing a user-friendly interface for interacting with
complex scientific computing software through conversational, natural language queries. S3LLM
aims to bridge the gap between the intricate world of scientific software and the diverse community
of users and developers, fostering a deeper understanding and facilitating more effective use of these
critical computational tools.

Different from most existing works on software understanding, the proposed S3LLM can handle
various types of tasks for large-scale scientific software understanding including source code query,
metadata analysis, and text-based technical report understanding. S3LLM is capable of conducting
queries over the information extracted from source code in diverse formats, such as DOT (graph
description language)5 and relational database. By leveraging the few-shot learning capability of
LLMs, S3LLM can also generate domain-specific language (DSL) queries, such as Feature Query
Language (FQL) [33], to gather and extract software features through code analysis. Furthermore,
S3LLM implements LangChain and Retrieval-Augmented Generation (RAG) [20] schemes to enable
text-based queries from technical reports and project summaries. More importantly, all aforemen-
tioned interactions and inquiries facilitated by S3LLM are executed utilizing natural language.

The contributions of this paper are summarized as follows:

– We have conceptualized, designed, and implemented S3LLM , a novel framework that utilizes
LLMs to improve the understanding of large-scale scientific software. This framework excels in
analyzing source code, metadata, and textual technical reports, providing a holistic approach
to software comprehension.

5 https://en.wikipedia.org/wiki/DOT_(graph_description_language)

https://en.wikipedia.org/wiki/DOT_(graph_description_language)

S3LLM 3

– S3LLM presents a user-friendly interface that employs natural language processing, allowing
users, even those with limited programming knowledge, to easily query and gain insights into
scientific software.

– Recognizing the need to balance inference speed with the framework’s computational demands,
S3LLM provides three options featuring LLaMA-2 models with 7B, 13B, and 70B parameters,
allowing users to choose the most appropriate model based on their specific requirements.

– Experiments conducted with the large-scale Energy Exascale Earth System Model (E3SM) [16]
demonstrate the effectiveness of our model in analyzing source code, metadata, and textual
documents.

– We contribute to the scientific computing community by releasing S3LLM as an open-source
tool, ensuring broad accessibility and usefulness across a broad spectrum of scientific computing
applications and research pursuits.

2 Related Work

Code information collection: A variety of tools have been developed to gather diverse forms of
code information. Tools such as cloc [1], sloc [6], and sonar [7] are designed to assess a project’s source
code to determine its size and the programming languages employed. Meanwhile, the ScanCode [5]
toolkit and fossology [3] are specialized tools that provide insights on software licenses, copyrights,
dependencies, and additional relevant information. The OSS Review Toolkit [4] further enhances
these capabilities by integrating third-party package managers (e.g., MAVEN, PIP, NPM) and code
scanners (e.g., Licensee, ScanCode), facilitating the identification of dependencies across different
open-source libraries within a project. Nonetheless, these tools do not leverage Artificial Intelligence
(AI) or LLMs to simplify the process of collecting code information, which requires users to input
their requirements in a format that these tools can interpret. In contrast, our framework S3LLM
distinguishes itself by allowing users to express their requirements in natural language, subsequently
providing precise and accurate code information. This approach significantly improves the efficiency
and accuracy of code analysis.
LLM-based Software Engineering: The integration of AI and LLMs has significantly trans-
formed code analysis and software development methodologies. This evolution is evident in the
widespread application of LLMs for code generation, underscoring their utility in enhancing pro-
gramming efficiency and accuracy [14,13]. Furthermore, research in this domain has validated the
effectiveness of LLMs in critical tasks such as unit test generation [28,26], bug analysis [23,30], and
debugging [11,19], showcasing their potential to refine testing processes, improve bug detection,
and streamline debugging. Recently, researchers have also applied LLM to large-scale scientific
software [24]. However, instead of employing LLM to understand the scientific code, researchers
typically focus on specific tasks such as extracting variables of interest by reading the code docu-
mentation [24]. Despite the prevalent focus on code generation, testing, and repair, S3LLM diverges
by leveraging both LLM and traditional techniques to deepen the understanding of large-scale sci-
entific codes.

3 Method

We first introduce an overview of the S3LLM framework, subsequently delving into the detailed
design of its components. S3LLM examines large-scale scientific software from multifaceted per-
spectives, utilizing diverse data types such as source code, code metadata, and textual reports. Each

4 K. Shaik et al.

FQL Document

Keywords

Terminology

Prompt

FQL Query

RAG

Query

Retrieval

DOT Explanation
+ Prompt Results

SQL TableCSV Data +
Prompt

Prompt for SQL
Query Results

DOT SQL Customized

Source
Code

Metadata

Document

Terminology:Keywords

LLaMA

LLaMA

LLaMA

LLaMA

DOT Explanation
+ Prompt Results

Text DocumentPDF

Prompt

ResultsRAG

Query

Retrieval
LLaMA

S3
LL

M
La

rg
e-

Sc
al

e
Sc

ie
nt

ifi
c

So
ftw

ar
e

U
nd

er
st

an
di

ng
 w

ith
 L

LM
s

Fig. 1: Framework overview of S3LLM

component’s design is meticulously outlined to elucidate how S3LLM facilitates a comprehensive
investigation of scientific software, ensuring a thorough understanding of its complex ecosystem.

3.1 Framework Overview

At the heart of S3LLM lies open-source LLaMA-2 models engineered for conversational interactions
in natural language. LLaMA-2 has been intricately configured to support multi-round conversations,
maintaining awareness of the ongoing context to ensure continuity and relevance in its responses,
thus embodying in-context learning capabilities. As depicted in Figure 1, S3LLM is architecturally
composed of three primary components dedicated to processing source code, code metadata, and
textual technical documents. For all of the three components, LLaMA-2 models play a key role in
translating natural languages into desired domain-specific language (DSL) queries or in text infor-
mation analysis and retrieval. In addition, some consisting components in S3LLM adopt RAG, a
methodology designed to enhance the responses of an LLM by consulting an external and authorita-
tive knowledge base not included within its initial training data, thereby refining its output prior to
generating a response. The choice of open-source LLaMA-2 models (7B, 13B, and 70B) as the foun-
dation for all language understanding tasks within S3LLM is strategic, offering versatility in model
sizes and ensuring a high degree of reproducibility across various computational environments.

3.2 Source Code Analysis

Large-scale scientific software, such as E3SM, often contains vast quantities of source code, exceeding
a million lines in some cases. This presents a significant challenge for open-source LLMs in directly
managing such a huge number of tokens by loading all of the tokens into their context windows.
Furthermore, many sophisticated source code analysis tools today require users to possess in-depth

S3LLM 5

Table 1: Examples of HPC feature questions and associated FQL queries
Question FQL Query

Is OpenMP used?
Library Utilization Query

FQL: CHECK (!$OMP ∥ pragma omp) WHERE (*) AS (OpenMP)

What is the minimum
version requirement of MPI?
Version Assessment Query

MAX (CHECK (MPI AINT ADD ∥ MPI AINT DIFF) WHERE (*) AS (3.1),

...,

CHECK (mpi.h ∥ use mpi ∥ mpif.h) WHERE (*) AS (2.0))

What OpenMP scheduling
method is used?

Feature Enumeration Query

LIST (CHECK (schedule(static) WHERE(*) AS (Static),

CHECK (schedule(dynamic) WHERE(*) AS (Dynamic), ...,

CHECK (schedule(runtime) WHERE(*) AS (Runtime))

programming expertise or specialized domain knowledge for effective source code interrogation. To
address these issues, S3LLM combines the code analysis capability of existing tools and the natural
language understanding capability of LLMs together, not only avoiding loading the entire codebase
into LLMs but also allowing users to query source code using natural language.

In illustrating the strategy of S3LLM for LLM-based source code analysis, we highlight XS-
can [32] as a representative backend engine. XScan is an integrated software toolkit designed to
extract key information of large-scale scientific code, such as lines of code, programming languages,
external library dependencies, and architecture-dependent parallel software features. While XScan
provides user-friendly methodologies for basic source code analysis tasks (e.g., adopting Doxygen
to construct caller-callee graphs or using CLOC [1] to tally lines of code), it also introduces FQL
for more nuanced static code analysis. Despite XScan offering straightforward solutions for basic
analysis through simple command executions, FQL’s reliance on user-generated queries to investi-
gate software features represents a significant hurdle. As Table 1 demonstrates, FQL accommodates
various query types, including Library Utilization, Version Assessment, and Feature Enumeration
Queries, all of which demand a degree of coding proficiency from the user for precise query for-
mulation. S3LLM is specifically designed to bridge this gap, addressing the critical challenge of
facilitating accessible source code analysis without requiring extensive programming knowledge. It
is important to highlight that the core LLMs powering S3LLM are broadly applicable and capable
of integrating with source code analysis engines beyond just XScan.

In the conversion process from natural language to FQL queries, S3LLM must master three
crucial elements: the purpose and syntax of FQL, comprehension of specific terminologies (e.g.
high-performance computing (HPC) programming standards) presented in natural language inputs,
and the establishment of an accurate translation from natural language to FQL. To equip the LLM
models within S3LLM with a comprehensive grasp of FQL and its programming syntax, we have
incorporated a foundational document on FQL alongside a collection of FQL query examples into
the RAG framework as external data sources. For a detailed exploration of the RAG methodology
utilized in this study, please refer to Section 3.4. Addressing the conversion of relevant terminologies
from natural language inputs into programming code keywords posed a significant challenge. Initial
attempts to generate these keywords using open-source LLM models yielded suboptimal results.
Consequently, we select GPT-4 to serve as the terminology translator within S3LLM . This approach
simplifies the creation of mappings from terminologies to corresponding programming keywords with
precision. These mappings are also stored as external data within RAG. Finally, we prompt S3LLM
to generate new FQL queries from provided natural language questions by utilizing few-shot learning
techniques and enriching the context with RAG data.

6 K. Shaik et al.

3.3 Software Metadata Comprehension

In the quest to deepen our comprehension of large-scale scientific software, a variety of code meta-
data is extracted utilizing current software analysis tools. Particularly, metadata related to software
architecture and data structures stands out as some of the most valuable and enlightening for un-
derstanding software intricacies. To capitalize on this rich metadata, S3LLM has been meticulously
crafted not only to interpret these data but also to respond to queries informed by them. Fundamen-
tally, our framework is adept at managing well-structured metadata formats, such as DOT, thereby
enhancing its utility in parsing and understanding the underlying structure and organization of
software code.

To enhance S3LLM ’s capability to handle diverse information from scientific computing soft-
ware, we implement a dual-phase strategy. Initially, we ensure that the LLMs grasp the structure
and organization of metadata formats. This is achieved by integrating context rich in such infor-
mation, utilizing either the RAG technique or by directly embedding metadata format information
into the prompts. Subsequently, S3LLM allows users to interrogate the metadata through natural
language prompts in such a context. Notably, S3LLM introduces two distinct prompting method-
ologies: zero-shot and few-shot modes. The zero-shot mode enables users to perform queries on
metadata without requiring prior example inputs, whereas the few-shot mode solicits demonstra-
tion examples from users to refine and guide the LLM’s responses. The few-shot will be more useful
when processing very complex software metadata.

S3LLM currently supports three types of metadata extracted from large-scale scientific software:
DOT, SQL, and specified data formats by third-party software. However, it is designed with the
flexibility to easily accommodate additional metadata formats in the future. For the DOT format,
we facilitate its understanding in S3LLM by incorporating a detailed explanation of DOT within
the prompt, followed by appending the specific query question. Given the widespread use of SQL in
relational database management, we leverage the LLaMA-2 models to generate SQL queries directly,
without the need for instruction-based prompting techniques. For custom data formats specified by
third-party software, we use the bespoke metadata produced by SPEL [22], a toolkit developed for
adapting E3SM models for GPU execution via OpenACC, as a case study. This choice illustrates
S3LLM ’s capability to interpret highly specialized data formats through the application of GPT-4,
underscoring our commitment to extending S3LLM ’s utility to encompass a broad spectrum of
metadata types, including those tailored by third-party software analysis tools.

3.4 Technical Document Interpretation

Large-scale scientific software often comes with a comprehensive set of supplementary documen-
tation, such as technical reports, user manuals, and research papers. While these documents are
rich in detail, they can be difficult to navigate efficiently. To simplify the process of extracting
relevant information from these extensive texts, S3LLM combines RAG with LLMs, significantly
enhancing the accuracy of document-related queries. The RAG framework consists of three key
components: document indexing, retrieval, and generation. Initially, it processes external texts by
breaking them down into manageable segments for the LLM’s contextual analysis. It then creates
and stores document embeddings for future retrieval. When a query is received, the system retrieves
relevant embeddings to form a context window for the LLM, which then generates responses based
on a prompt that includes both the query and the retrieved data.

S3LLM adopts LangChain, an advanced open-source framework specifically designed for creat-
ing applications with LLMs, to implement RAG. LangChain’s DocumentLoaders and Text Splitters

S3LLM 7

are utilized to effectively organize and segment documents for query processing. Subsequently, Vec-
torStore and Embeddings models are employed to generate and maintain document embeddings.
For this task, we use all-MiniLM-L6-v2 document embeddings to create the embeddings and a
FAISS-based similarity index vector storage for efficient retrieval. The Retriever component is cru-
cial in obtaining the relevant segments to be included in the user-defined prompt. Lastly, the refined
query, augmented with the retrieved data, is fed into LLaMA-2, which generates customized re-
sponses. This demonstrates the smooth integration of RAG within S3LLM , enhancing document
comprehension in the field of scientific software.

4 Case Study

We deploy S3LLM on the Energy Exascale Earth System Model (E3SM) as a case study to demon-
strate its effectiveness in analyzing source code, code metadata, and text-based technical reports.

4.1 E3SM Introduction

The E3SM is a state-of-the-art Earth system modeling framework, developed and supported by
the United States Department of Energy (DOE)[16]. This model is designed to facilitate the de-
tailed simulation of intricate interactions among the Earth’s atmospheric, terrestrial, oceanic, and
cryospheric components. Standing as one of the most advanced Earth system models globally, E3SM
is extensively utilized by the scientific community to explore a large range of critical subjects, in-
cluding climate dynamics, meteorological prediction, and the assessment of natural hazards. E3SM
has a very long history and is written mainly by legacy programming languages such as Fortran.
In addition, E3SM contains more than one million lines of code. Therefore, we think E3SM is a
qualified large-scale scientific computing software for evaluating the proposed S3LLM . Due to our
special interest in kilometer-scale land component development on Exascale computers, we designed
several demonstration queries focusing on the ultrahigh resolution E3SM Land Model (uELM) [27].

4.2 Source Code Query Results

To illustrate the effectiveness of S3LLM in source code analysis, we assessed its ability to generate
FQL (Feature Query Language) queries across three distinct categories: Library Utilization Queries,
Version Assessment Queries, and Feature Enumeration Queries. Through the use of crafted prompts,
as demonstrated in the subsequent text boxes, S3LLM successfully generates the correct FQL query
in certain instances. Specifically, for the Library Utilization Query, S3LLM produces the precise
FQL query in a zero-shot manner. This accuracy is likely attributed to the pretraining of the
LLaMA-2 model within S3LLM on RAG supporting documents that include FQL queries and
HPC terminologies. Similarly, for Version Assessment and Feature Enumeration Query, “Please
Generate FQL query to Find the minimum version of MPI ” and “Please Generate FQL query to
List MPI process topology used in the Code” can prompt S3LLM to generate accurate queries.

Prompt for Library Utilization Query:
Please Generate FQL query to Check Whether OpenMP is used

Response:
CHECK (omp task || end task || omp taskloop || omp taskloop simd

|| omp taskyield) WHERE (*)

8 K. Shaik et al.

Prompt for Version Assessment Query:
Please Generate FQL query to Find the minimum version of MPI

Response:
MAX (CHECK (MPI_AINT_DIFF) WHERE (*) AS (31),

CHECK (MPI_COMM_DUP_WITH_INFO) WHERE (*) AS (30),

CHECK (MPI_COMM_SET_INFO) WHERE (*) AS (30))

Prompt for Feature Enumeration Query:
Please Generate FQL query to List MPI process topology used in the Code

Response:
LIST (CHECK (MPI_CART_CREATE WHERE(*) AS (Cartesian), CHECK (MPI_GRAPH_CREATE WHERE(*)

AS (Graph), CHECK (MPI_DIST_GRAPH_CREATE_Adjacent WHERE(*) AS (Distributed Graph)),

CHECK (omp parallel num_threads(dynamic) WHERE(*) AS (Dynamic Threads),

CHECK (omp schedule(static, dynamic, guided, auto, runtime)) WHERE(*) AS (Scheduling))

4.3 Metadata Comprehension with S3LLM

In our study, we utilize three distinct forms of metadata to demonstrate the capabilities of S3LLM
in enhancing metadata comprehension. These include DOT files produced by XScan [32], CSV files
generated by SPEL [22]6, and bespoke metadata formats also created by SPEL, all derived from
the E3SM. This diverse dataset showcases S3LLM ’s versatility and effectiveness in interpreting and
leveraging different metadata representations to deepen our understanding of complex scientific
software systems.

Our analysis begins with assessing S3LLM ’s efficacy on standardized DOT files, as produced
by XScan, and on a unique metadata format devised by SPEL. A DOT file, as illustrated in blow
colored box, represents a directed graph that visualizes the interactions between caller and callee
functions within E3SM, offering insights into the software’s structural dynamics.

Structured query language (SQL) is widely used for processing information in relational databases,
and LLaMA-2 models can conveniently translate natural language into SQL queries. To illustrate the
SQL processing capabilities of S3LLM , we employ two example CSV files generated by SPEL [22],
as detailed in Table 2. Our approach involves a two-step process with S3LLM . First, we instruct
S3LLM to generate SQL statements that transform the two subtables depicted in Table 2 into for-
mal SQL tables. Following this, we guide S3LLM to generate specific SQL queries: first, to identify
the name of the component characterized by a 2D Dimension and having a Derived Type of col pp;
and second, to construct a new SQL view by joining these two subtables. This methodology under-
scores S3LLM ’s adeptness at navigating and manipulating SQL tables, showcasing its proficiency
in facilitating advanced database operations.

6 A software toolkit designed for porting E3SM land model onto GPUs using OpenACC.

S3LLM 9

Table 2: Two CSV files produced by SPEL [22] to be processed as SQL tables

(a) Detailed information about Component

Variable Type Dimension

snl integer 1D

dz real 2D

sabg patch real 1D

sabg lyr patch real 2D

ws col real 1D

lake icefrac col real 2D

(b) Derived Types of each Component

Derived Type Component

col pp snl

col pp dz

solarabs vars sabg patch

solarabs vars sabg lyr patch

lakestate vars ws col

lakestate vars lake icefrac col

Prompt for Summarizing DOT File:
DOT file can describe a directed graph using keyword of “digraph”. Inside a directed graph, each line
starts with a module name which is followed by the “::” symbol. For example, “allocationmod” is the
module in “allocationmod::allocationinit -> clm time manager.” Please list all the unique modules
in the following DOT file describing directed graph G.

digraph G {

emi_datamod::emidcopy -> emi_datamod::emidallocatememory_real_3d

emi_datamod::emidcopy -> emi_datamod::emidallocatememory_real_4d

elm_driver::elm_drv -> decompmod::get_proc_clumps

elm_driver::elm_drv -> satellitephenologymod::interpmonthlyveg

elm_driver::elm_drv -> activelayermod::alt_calc

elm_driver::elm_drv -> verticalprofilemod::decomp_vertprofiles

elm_driver::elm_drv -> balancecheckmod::begingridwaterbalance

elm_driver::elm_drv -> dynsubgriddrivermod::dynsubgrid_driver

elm_driver::elm_drv -> ndepstreammod::ndep_interp

ch4varcon::ch4conrd -> fileutils::relavu

elm_driver::elm_drv -> firemod::fireinterp

canopyhydrologymod::canopyhydrology_readnl -> fileutils::relavu

elm_driver::elm_drv -> pdepstreammod::pdep_interp

controlmod::control_init -> fileutils::relavu

firemod::firefluxes -> elm_nlutilsmod::find_nlgroup_name

firemod::firefluxes -> ndepstreammod::elm_domain_mct

firemod::firefluxes -> histfilemod::hist_addfld1d

}

Response:
Sure! Here are the unique modules in the directed graph G described by the DOT file:
1. emi datamod

2. elm driver

...

16. histfilemod

17. verticalprofilemod

There are 17 unique modules in total.

10 K. Shaik et al.

Prompt for Creating SQL Views:
Please generate SQL commands to construct a new SQL view by joining the following two SQL
tables:: Table 1 Info; Table 2 Info.

Response:
CREATE VIEW myview AS

SELECT t1.Component, t1.Type, t1.Dimension, t2.DerivedType

FROM table1 t1

JOIN table2 t2 ON t1.Component = t2.Component;

SELECT * FROM myview;

Prompt for Creating SQL Table from CSV:
Please generate SQL commands to covert the following textural table into an SQL table with
Component as the PRIMARY KEY:

Component,Type,Dimension

snl,integer,1D

dz,real,2D

sabg_patch,real,1D

sabg_lyr_patch,real,2D

ws_col,real,1D

lake_icefrac_col,real,2D

Response:
CREATE TABLE components (

Component VARCHAR(255) PRIMARY KEY,

Type VARCHAR(255),

Dimension VARCHAR(255)

);

INSERT INTO components (Component, Type, Dimension) VALUES

(‘snl’, ‘integer’, ‘1D’),

(‘dz’, ‘real’, ‘2D’),

(‘sabg_patch’, ‘real’, ‘1D’),

(‘sabg_lyr_patch’, ‘real’, ‘2D’),

(‘ws_col’, ‘real’, ‘1D’),

(‘lake_icefrac_col’, ‘real’, ‘2D’);

Prompt for Querying SQL Table:
Please generate SQL commands to identify the name of the component characterized by a 2D
Dimension and having a Derived Type of col pp by joining the following two SQL tables: Table
1 Info; Table 2 Info.

Response:
SELECT Component

FROM Table1

JOIN Table2 ON Table1.Component = Table2.Component

WHERE Dimension = ‘2D’ AND DerivedType = ‘col_pp’;

Additionally, a sequence of execution for LakeTemperature as delineated by SPEL [22] is shown
in the colored box below. This example highlights the execution sequence within E3SM, where

S3LLM 11

the first column lists variables utilized by the LakeTemperature module. The top row segments the
execution flow into distinct phases {main (LakeTemperature) -> subroutine -> main -> subroutine
-> main}, separated by “|”, depicting the procedural pathway. Each column within these sections
signifies a Fortran “do loop” sequence. The entries within this table specify each variable’s role
in the corresponding “do loop”, with potential values being “ro” (read-only), “wo” (write-only),
“rw” (read-write), or “-” (not in use). This offers an in-depth view of variable usage during the
execution process, which is beneficial for code performance optimization (through asynchronous
kernel launch) on GPUs. This structured approach to metadata analysis underscores S3LLM ’s
capability to navigate and elucidate complex metadata representations, enhancing comprehension
and facilitating deeper insights into the software’s operational mechanisms.

Prompt for Analyzing Metadata of LakeTemperatureAllLoopVariables generated by
SPEL [22]:
Here is the data format information for the LakeTemperatureAllLoopVariables.txt file: 1. The first
column contains the name of variables that are used by the LakeTemperature. 2. The top row displays
various sections (divided by “ |”) that illustrate the sequence of execution: lakeTemperature(main)
-> its subroutine-¿return to main -> its subroutine -> main 3. Every column within code section
(divided by “ |”) represents a “do loop” (Fortran) segment. The value of each table element indi-
cates the usage of a variable in that “do loop”, the value could be “ro, wo, ro, -”. ro: read-only, wo:
write-only, rw: read-write, -: not in use”
The content of LakeTemperatureAllLoopVariables.txt file:

|LakeTemperature |soilthermprop_|LakeTemperature |

filter_lakec |ro ro - ro ro ro - ro|ro ro ro ro |ro ro - ro ro - ro ro ro|

lake_col_to_filter |wo - ro - - - ro - |- - - - |- - ro - - - - - -|

ocvts |wo - - - - - - - |- - - - |rw rw - - - - - - -|

puddle |wo - - - - - - - |- - - - |- - - - - - - - -|

frzn |wo - - - - - - - |- - - - |- - - - - - - - -|

bottomconvect |wo - - - - - - - |- - - - |- - - - - - - - -|

hc_soisno |wo - - - - - - - |- - - - |- - - - - - - - -|

hc_soi |wo - - - - - - - |- - - - |- - - - - - - - -|

How many variables are used by the first do loop in lakeTemparature. And what is the
role of these variables (ro, wo, or rw)?
Response:
This indicates that there are 8 variables used in the first “do loop” of the LakeTemperature section.
Their roles are as follows:
- 1 variable is read-only (filter lakec).
- 7 variables are write-only (lake col to filter, ocvts, puddle, frzn, bottomconvect, hc soisno, hc soi).

4.4 Document Parsing

This section demonstrates the effectiveness of combining the RAG framework and LangChain with
LLMs, as described in Section 3.4, for extracting specific technical information from comprehensive
scientific documents. We utilize a 28-page technical report on Lake Temperature (in PDF format),
from the Community Land Model [21], as the testbed. In Experiment 1, S3LLM adeptly retrieves
information regarding the calculation of thermal conductivities at layer interfaces, showcasing the

12 K. Shaik et al.

method’s ability to understand and extract specific computational techniques, specifically the har-
monic mean approach. Experiment 2 further demonstrates S3LLM ’s efficacy by accurately describ-
ing the application of the Crank-Nicolson method within the model, showcasing its competence in
elucidating detailed methodological implementations. Lastly, Experiment 3 confirms S3LLM ’s pro-
ficiency in extracting complex physical processes, such as phase changes, and its capability in both
comprehension and explanation. Collectively, these experiments underscore the robustness of our
approach in navigating and interpreting sophisticated scientific documents, affirming its potential
to significantly enhance the comprehension of complex scientific documentation interpretation.

Prompt for Querying Technical Description of Lake Temperature -1:
What method is used to calculate the thermal conductivities at the interfaces between layers in the
model?

Response: The thermal conductivities at layer interfaces are calculated as the harmonic mean of
the conductivities of the neighboring layers.

Prompt for Querying Technical Description of Lake Temperature -2:
How is the Crank-Nicolson method applied in the context of this model?

Response: The Crank-Nicolson method is used to solve equation (9.44) and it results in a tridiag-
onal system of equations.

Prompt for Querying Technical Report of Lake Temperature -3:
What is the significance of phase changes in the model, and how are they accounted for?

Response: Phase changes, such as freezing and melting, play a significant role in the atmosphere
model, as they affect the energy balance at the land surface. The model accounts for phase changes
by calculating heat diffusion and phase change in given layers based on temperature and moisture
conditions. The available energy for melting is computed as function of temperature and moisture
content.

5 Discussion and Future Work

The foundational components of S3LLM, LLMs, have demonstrated remarkable proficiency in in-
terpreting various data sources, including source code, metadata, and documents, offering insights
from multiple angles. Despite these achievements, there are inherent limitations within LLMs that
warrant further investigation in our future work. First, the constraint related to the maximum token
count supported by open-source LLMs necessitates expansion to accommodate extensive queries,
aiming to enhance in-context learning capabilities. Moreover, the treatment of specialized termi-
nologies within domain-specific sciences requires refinement to ensure more accurate and dependable
processing. Currently, commercial versions like GPT-4 are employed in S3LLM to derive coding
keywords from terminologies; however, we posit that leveraging a more transparent, reproducible
model, amenable to fine-tuning for domain-specific sciences, could optimize this process. Further-
more, S3LLM could be enriched with additional functionalities, such as identifying and addressing
computational bottlenecks within large-scale codes and providing direct source code optimization
recommendations. These areas of potential enhancement motivate us for the continued development
and improvement of S3LLM in future iterations.

S3LLM 13

6 Conclusion

This paper presents S3LLM , a framework developed on the foundation of LLMs, aimed at unraveling
the complexities inherent in large-scale scientific software. By enhancing the capabilities of LLaMA-2
models within S3LLM through innovative approaches such as instruction-based prompting, inte-
gration of external GPT-4 queries, and the adoption of Retrieval-Augmented Generation (RAG)
and LangChain techniques, we have significantly expanded the operational capacity of pre-trained
LLMs. Our comprehensive evaluation across a variety of data types, including source code, diverse
metadata formats (DOT, SQL, and specialized schemas), and textual documents, has validated
the efficacy of S3LLM . It is our aspiration that S3LLM will illuminate pathways for forthcoming
inquiries in the fields of generative AI and software engineering, particularly within the domain of
scientific computing.

References

1. CLOC. https://github.com/AlDanial/cloc. Accessed: 2024-02-27.
2. Doxygen. https://www.doxygen.nl/. Accessed: 2024-03-01.
3. Fossology. https://www.fossology.org/. Accessed: 2024-02-27.
4. Oss review toolkit. https://github.com/oss-review-toolkit/ort. Accessed: 2024-02-27.
5. ScanCode Toolkit. https://github.com/nexB/scancode-toolkit. Accessed: 2024-02-27.
6. SLOCCount User’s Guide. https://dwheeler.com/sloccount/sloccount.html. Accessed: 2024-02-27.
7. Sonar. https://www.sonarsource.com/products/sonarqube/. Accessed: 2024-02-27.
8. Sphinx. https://www.sphinx-doc.org/en/master/. Accessed: 2024-03-01.
9. Arkadeep Acharya, Brijraj Singh, and Naoyuki Onoe. Llm based generation of item-description for

recommendation system. In Proceedings of the 17th ACM Conference on Recommender Systems, pages
1204–1207, 2023.

10. Desirée Bill and Theodor Eriksson. Fine-tuning a llm using reinforcement learning from human feedback
for a therapy chatbot application, 2023.

11. Nghi DQ Bui, Yue Wang, and Steven Hoi. Detect-localize-repair: A unified framework for learning to
debug with codet5. arXiv preprint arXiv:2211.14875, 2022.

12. Yapei Chang, Kyle Lo, Tanya Goyal, and Mohit Iyyer. Booookscore: A systematic exploration of
book-length summarization in the era of llms. arXiv preprint arXiv:2310.00785, 2023.

13. Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration code generation via chatgpt. arXiv
preprint arXiv:2304.07590, 2023.

14. Yunhe Feng, Sreecharan Vanam, Manasa Cherukupally, Weijian Zheng, Meikang Qiu, and Haihua Chen.
Investigating code generation performance of chat-gpt with crowdsourcing social data. In Proceedings
of the 47th IEEE Computer Software and Applications Conference, pages 1–10, 2023.

15. Samuel Kernan Freire, Chaofan Wang, and Evangelos Niforatos. Chatbots in knowledge-intensive
contexts: Comparing intent and llm-based systems. arXiv preprint arXiv:2402.04955, 2024.

16. Jean-Christophe Golaz, Luke P. Van Roekel, ..., Mark A. Taylor, Renata B. McCoy, L. Ruby Leung,
and David C. Bader. The DOE E3SM model version 2: Overview of the physical model and ini-
tial model evaluation. Journal of Advances in Modeling Earth Systems, 14(12):e2022MS003156, 2022.
e2022MS003156 2022MS003156.

17. Shijia Huang, Jianqiao Zhao, Yanyang Li, and Liwei Wang. Learning preference model for llms via au-
tomatic preference data generation. In The 2023 Conference on Empirical Methods in Natural Language
Processing, 2023.

18. Breanna Jury, Angela Lorusso, Juho Leinonen, Paul Denny, and Andrew Luxton-Reilly. Evaluating
llm-generated worked examples in an introductory programming course. In Proceedings of the 26th
Australasian Computing Education Conference, pages 77–86, 2024.

https://github.com/AlDanial/cloc
https://www.doxygen.nl/
https://www.fossology.org/
https://github.com/oss-review-toolkit/ort
https://github.com/nexB/scancode-toolkit
https://dwheeler.com/sloccount/sloccount.html
https://www.sonarsource.com/products/sonarqube/
https://www.sphinx-doc.org/en/master/

14 K. Shaik et al.

19. Sungmin Kang, Bei Chen, Shin Yoo, and Jian-Guang Lou. Explainable automated debugging via large
language model-driven scientific debugging. arXiv preprint arXiv:2304.02195, 2023.

20. Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:9459–9474,
2020.

21. Keith W Oleson, David M Lawrence, GB Bonan, Beth Drewniak, Maoyi Huang, CD Koven, Samuel
Levis, Fang Li, William J Riley, Zachary M Subin, et al. Technical description of version 4.0 of the
community land model (clm). NCAR Tech. Note NCAR/TN-478+ STR, 257:1–257, 2010.

22. Peter Schwartz, Dali Wang, Fengming Yuan, and Peter Thornton. SPEL: Software tool for porting
e3sm land model with openacc in a function unit test framework. In 2022 Workshop on Accelerator
Programming Using Directives (WACCPD), pages 43–51. IEEE, 2022.

23. Yanqi Su, Zheming Han, Zhipeng Gao, Zhenchang Xing, Qinghua Lu, and Xiwei Xu. Still confusing
for bug-component triaging? deep feature learning and ensemble setting to rescue. In 2023 IEEE/ACM
31st International Conference on Program Comprehension (ICPC), pages 316–327. IEEE, 2023.

24. Christos Tsigkanos, Pooja Rani, Sebastian Müller, and Timo Kehrer. Variable discovery with large
language models for metamorphic testing of scientific software. In International Conference on Com-
putational Science, pages 321–335. Springer, 2023.

25. Dave Van Veen, Cara Van Uden, Louis Blankemeier, Jean-Benoit Delbrouck, Asad Aali, Christian
Bluethgen, Anuj Pareek, Malgorzata Polacin, Eduardo Pontes Reis, Anna Seehofnerova, et al. Clinical
text summarization: Adapting large language models can outperform human experts. Research Square,
2023.

26. Vasudev Vikram, Caroline Lemieux, and Rohan Padhye. Can large language models write good
property-based tests? arXiv preprint arXiv:2307.04346, 2023.

27. Dali Wang, Peter Schwartz, Fengming Yuan, Peter Thornton, and Weijian Zheng. Toward ultrahigh-
resolution e3sm land modeling on exascale computers. Computing in Science & Engineering, 24(6):44–
53, 2022.

28. Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, and Xin Peng.
No more manual tests? evaluating and improving chatgpt for unit test generation. arXiv preprint
arXiv:2305.04207, 2023.

29. Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and Tatsunori B
Hashimoto. Benchmarking large language models for news summarization. Transactions of the As-
sociation for Computational Linguistics, 12:39–57, 2024.

30. Ting Zhang, Ivana Clairine Irsan, Ferdian Thung, and David Lo. Cupid: Leveraging chatgpt for more
accurate duplicate bug report detection. arXiv preprint arXiv:2308.10022, 2023.

31. Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena.
Advances in Neural Information Processing Systems, 36, 2024.

32. Weijian Zheng, Dali Wang, and Fengguang Song. XScan: an integrated tool for understanding open
source community-based scientific code. In International Conference on Computational Science, pages
226–237. Springer, 2019.

33. Weijian Zheng, Dali Wang, and Fengguang Song. FQL: An extensible feature query language and
toolkit on searching software characteristics for hpc applications. In Guido Juckeland and Sunita Chan-
drasekaran, editors, Tools and Techniques for High Performance Computing, pages 129–142, Cham,
2020. Springer International Publishing.

	S3LLM: Large-Scale Scientific Software Understanding with LLMs using Source, Metadata, and Document

