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Abstract
Many extreme-scale applications require the movement of large quantities of data to, from, and among leadership
computing facilities, as well as other scientific facilities and the home institutions of facility users. These applications,
particularly when leadership computing facilities are involved, can touch upon edge cases (e.g., terabyte files) that had
not been a focus of previous Globus optimization work, which had emphasized rather the movement of many smaller
(megabyte to gigabyte) files. We report here on how automated client-driven chunking can be used to accelerate
both the movement of large files and the integrity checking operations that have proven to be essential for large data
transfers. We present detailed performance studies that provide insights into the benefits of these modifications in a
range of file transfer scenarios.

Introduction

Modern science applications often involve the processing of
massive data from a wide spectrum of sources, encompassing
both experimental and observational facilities, such as
synchrotron light sources (Liu et al. 2021a) and telescopes,
and supercomputers, as in climate science (Reichstein et al.
2019) and cosmology (Heitmann et al. 2019). Workflows
underpinning these science applications must be able to
deliver these data to processing resources that best suit each
applications’ scale, timeliness, and hardware requirements.
When data producers are remote from consumers, as they
often are, these workflows must be able to transfer large data
across high-bandwidth networks. Reliable and rapid wide
area data movement thus becomes a vital element of exascale
computing systems (Alexander et al. 2020).

The sharing of even extremely large data among
geographically distributed resources and researchers has
become increasingly feasible thanks to the widespread
availability of high-bandwidth networks, the deployment of
specialized network architectures (Dart et al. 2013), and
the development of specialized data transfer protocols and
services, notably the GridFTP protocol (Allcock et al. 2005)
and the Globus service (Chard et al. 2016) which is widely
used to manage GridFTP-based file transfers. Thus it has
become commonplace to transfer petabytes over networks
such as Internet2 and the U.S. Department of Energy’s ESnet
(Kettimuthu et al. 2018; Lacinski et al. 2024). However,
emerging applications pose new challenges relating to the
transfer of small numbers of extremely large (e.g., multi-TB)
files, a workload for which Globus has not been optimized.
Here, we report on work that tackles these challenges
by developing and evaluating enhancements to Globus for
such transfers. These enhancements focus on enabling the
partitioning of large files, during a transfer, into many chunks
that can be transmitted concurrently. We show that this
chunking can accelerate both data transfer and integrity
checking operations performed as part of a transfer.

Background

Scientific Data Transfer Infrastructure
Modern scientific computing environments employ special-
ized data transfer infrastructure designed to maximize the
speed achievable when moving data among geographically
distributed storage systems. These infrastructures typically
combine a high-speed network; high-speed parallel file sys-
tems; a network and data transfer node (DTN) architecture to
remove barriers to the rapid transfer of data over the network
to/from file systems; and the Globus service and agents to
achieve high-speed data movement.

Contemporary science networks such as ESnet connect
research institutions at 100 Gb/s or higher rates. These
networks are optimized for high-speed, reliable packet
transport. At the end of these networks are typically high-
performance parallel file systems such as Lustre (of which
more below) that incorporate large degrees of internal
parallelism to achieve high I/O rates. The elements that sit
in between the external network and the file system play
a crucial role in enabling high-speed data transfers. Two
essential elements (Dart et al. 2013) are a clean network path
to the external networks (without, for example, firewalls)
and one or more Data Transfer Nodes (DTNs) configured
to drive transfers at high speeds. DTNs are specialized
servers configured specifically for efficient, high-speed
data transfers. Specifically, they are equipped with high-
performance network interfaces, often 10 Gigabit Ethernet
or higher; are configured to optimize the data path to
minimize latency and maximize throughput; are typically
connected directly to ESnet to take full advantage of its
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Figure 1. A modern data transfer infrastructure connects high-speed storage to wide area networks via a clean, high-bandwidth
network path with one or more data transfer nodes (DTNs) hosting Globus Connect agents. The cloud-hosted Globus service
acts as a client to the Globus Connect agents, instructing them to perform file transfers in response to user requests.

high-speed capabilities; are also connected directly to high-
speed storage; and run Globus Connect servers to handle
large datasets, support reliable multi-stream file transfers,
and manage security, access control, and logging.

DTNs typically sit outside any corporate firewall(s) so that
data can move between wide area network and HPC storage
without interference. To ensure that this configuration
does not create security exposures, DTNs are configured
with security measures tailored to the protection of data
during transfer. This is particularly important when handling
sensitive or proprietary information.

GridFTP and Globus
GridFTP (Allcock 2003) is an extension of the standard
File Transfer Protocol (FTP) designed specifically for
high-performance, secure data transfer tasks. Its most
widely employed implementation is that included in Globus
(Allcock et al. 2001; Chard et al. 2016), and in this brief
summary we focus our discussion on that instantiation
(Allcock et al. 2005).

The GridFTP protocol and its Globus implementation
incorporate a variety of features designed for high-speed,
reliable, and secure file transfer. For performance, Globus
GridFTP employs parallelism, whereby a single data
mover employs multiple concurrent connections to transfer
different parts of a single file, and concurrency, whereby
multiple data movers communicate different files: see
Figure 2. It also employs pipelining, in which multiple file
transfer requests can be in flight without acknowledgments
(see Figure 3), and can handle third-party transfers, whereby
the data transfer operation is initiated by one machine but
involves data moving directly between two other machines.
The latter capability is fundamental to Globus, because it
allows for transfers to be initiated, monitored, and managed
by the cloud-hosted Globus service.

Globus GridFTP incorporates fault recovery mechanisms
that enable the resumption of data transfers upon failure,
rather than a total restart—a crucial capability when

transferring large datasets, where a failure can occur due
to various network or system issues. For security, Globus
GridFTP supports strong authentication and data encryption
to ensure that data transfers are secure and that only
authorized users can access the service. It also implements
integrity checking to detect data corruption at any point
along the path between source storage and destination
storage. (Data corruption while data at rest, while a concern
(Bairavasundaram et al. 2008), is viewed as out of scope.)
In addition, its modular architecture allows for integration
with a wide variety of storage systems, from conventional
POSIX to high-performance parallel file systems and a range
of object stores (Liu et al. 2021b).

The GridFTP protocol supports what we refer to here
as chunked data transfer by defining new commands
such as SPAS (Striped Passive) and SPOR (Striped Port),
and by adding stripe layout and block size options to
the FTP RETR command (Allcock 2003). The original
Globus implementation of GridFTP (Allcock et al. 2005)
implemented these commands, which enabled it to achieve
∼17 Gb/s of throughput between parallel file systems
at NCSA and SDSC almost two decades ago. In this
server-side chunking mechanism, the server determined how
many GridFTP server processes to use for a chunked data
transfer request. Though a powerful capability, a significant
limitation is that the GridFTP control server must decide
the number of nodes and processes to use for a chunked
transfer, and in practice the GridFTP control server at
one end had no knowledge about the configuration of the
GridFTP server (e.g., number of DTNs) at the other end.
This difficulty, plus some stability issues in the server-side
chunking implementation, meant this mechanism was not
widely used in practice.

From 2010 forward, Globus was re-architected as a hybrid
architecture in which a cloud-hosted Globus service manages
the activities of Globus Connect agents, for example by
requesting pairs of such agents to perform file transfers
in response to user requests (Foster 2011). Today, tens of
thousands of such agents are deployed on storage systems
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at thousands of institutions worldwide. Globus service state
is maintained in geographically replicated and thus highly
reliable cloud storage, while file transfers proceed directly
from one agent to another under the direction of the Globus
service. As we describe in the following, the Globus service’s
knowledge of Globus Connect agent configurations allows
for the implementation of client-side chunking, in which the
Globus service, acting as a client to those agents, leverages
partial file transfer mechanisms in the GridFTP protocol,
in the form of ERET/ESTO (Extended Retrieve / Extended
Store) commands (Allcock 2003), to drive chunked transfers.

Previous Performance Evaluations
Many studies of data transfer performance have been
performed over the years, involving a wide variety of
network environments, protocols, and workloads. Here we
comment just on some recent studies of Globus performance,
as they provide context for subsequent discussion.

Allcock et al. (2005) and Ito et al. (2005) studied
the impact of concurrency and parallelism on achieved
transfer performance. Yildirim et al. (2012) conduct a more
detailed investigation of the impact of GridFTP pipelining,
parallelism, and concurrency on performance, and provide
guidelines for setting these parameters. Kettimuthu et al.
(2015) showed that by ensuring a sufficient, but not
excessive, allocation of concurrency to the right transfers,
overall performance of the resources can be improved
significantly. Arslan et al. (2018) present algorithms
for dynamic adaptation of these parameters to improve
performance.

Liu et al. (2017) applied machine learning methods to a
large collection of Globus log data to estimate parameters
for predictive models that yielded insights into factors deter-
mining end-to-end transfer performance. One observation
was that “contention at endpoints can significantly reduce
aggregate performance of even overprovisioned networks.”

Liu et al. (2018a) analyzed 40 billion GridFTP command
logs totaling 3.3 exabytes and 4.8 million transfer logs
collected by the Globus transfer service from 2014/01/01
to 2018/01/01. Among many interesting observations, we
note two: First, they saw one integrity check failure per
1.26 TB, although admitting that the integrity checking
protocol could not distinguish between true data corruption
and a file changed deliberately during a transfer. Second, they
observed that most datasets transferred by Globus had only
one file, and that 17.6% of those datasets (or 11% of the
total) had a file size of ≥100 MB—motivating the need for
distributing single-file transfers over multiple servers.

Kettimuthu et al. (2018) undertook a study in which
they sought to move 1 PiB (250 B = 1.125 PB) in 24
hours over a 100 Gb/s network connecting Argonne National
Laboratory and the National Center for Supercomputing
Applications. They succeeded ultimately in moving 1 PiB
in 24 h 3 min without integrity checking (an average rate
of 92.4 Gb/s) and in 30 h 52 min (72 Gb/s) with integrity
checking. They achieved this rate via careful optimization
of transfer parameters, including organizing the data to be
transferred into 4 GB files and setting concurrency to 128
and parallelism to 1 (i.e., transferring 128 files concurrently,
with a total of 128 TCP streams).

Liu et al. (2019) conducted a detailed study of per-file
overheads in wide area Globus transfers. Their results are
applicable mainly to smaller files.

The Petascale DTN project (Dart et al. 2021b) was
motivated, in the first instance, by the observation that
despite HPC facilities being connected by 100 Gb/s networks
and equipped with dedicated DTNs, achieved end-to-end
data transfer performance among HPC facilities was often
disappointing, rarely exceeding 10 Gb/s. Thus in 2020
researchers at four such facilities (ALCF, NERSC, OLCF,
and NCSA) undertook a systematic investigation of data
transfer performance, with the goal of achieving routine
transfer rates of 1 PB/week (a sustained 15 Gb/s) among the
participating sites. They used for these studies a ∼4.4 TB
output dataset from a HACC simulation run (Dart et al.
2021a), comprising a total of 211 directories and 19 260
files, ranging in size from zero bytes to 11.3 GB. As shown
in Table 1, performance among the four sites improved
substantially over the course of the studies. The authors
acknowledge multiple reasons for these improvements, from
network upgrades to improved DTN hardware and changes
to both the Globus implementation (e.g., see Section IV.C
in Liu et al. (2018b)) and policies, and emphasize the
importance of sustained monitoring to guide optimizations.

Table 1. Pairwise average data transfer rates, in Gb/s, reported
by the Petascale DTN project (Dart et al. 2021b) between pairs
of sites before (upper sub-table) and after (lower sub-table)
optimization of DTN configurations.

Destination
Source ALCF NCSA NERSC OLCF

Performance at start of project
ALCF - 13.4 10.0 10.5
NCSA 8.2 - 6.8 6.9
NERSC 7.3 7.6 - 6.0
OLCF 11.1 13.3 6.7 -

Performance at end of project
ALCF - 50.0 35.0 46.8
NCSA 56.7 - 22.6 34.7
NERSC 42.2 33.7 - 39.0
OLCF 47.5 43.4 33.1 -

Methodology

Our major focus in this work is to enable rapid transfer of
large files. To this end, we focus our attention on two goals.

Our first goal is to extend the Globus transfer service to
orchestrate the actions of multiple data movers when moving
large files, with the goal of achieving improved performance
for large file transfer on POSIX file systems. With this
mechanism, large files are chunked, and transferred, in
parallel across multiple DTNs, from their source to their
destination. We investigate the optimal chunk size capable
of keeping all concurrent transfer sessions used, and
incorporate changes to the transfer service to implement
client-side chunking. (We use the term chunking for this
Globus capability here, rather than striping, so as to avoid
confusion with striping as implemented in the Lustre file
system, which we also discuss in the following.)
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Figure 2. Concurrency (multiple data movers) and parallelism (multiple TCP connections) as implemented in Globus GridFTP.

The second related goal is to optimize the process used
by Globus to verify the integrity of transferred data, as
the associated checksum computations and additional read
operation have been shown to introduce significant costs in
high-bandwidth transfers (Kettimuthu et al. 2018).

Distribution of Transfers Over Multiple DTNs
As described above, Globus leverages concurrency to
transmit multiple files at one time, with the degree of
concurrency supported by a particular Globus endpoint
determined by configuration parameters that may be adjusted
by the endpoint administrator.

Concurrency is a powerful accelerator of data transfers
when many files are to be transmitted at the same time.
By allowing different data movers to proceed independently
with reading and transmitting (or receiving and writing),
aggregate achieved I/O rates to the storage system increase,
as do aggregate achieved network bandwidth in many
cases—for example, when individual DTN connections to
a border router have lower capacity than that router’s
connection to the wide area network. Furthermore, as each
data mover can operate on a separate file concurrently,
no coordination costs are incurred. However, concurrency
provides no benefits at all when transferring a single large
file, as in that case just a single data mover will engage in data
movement, leaving other data movers idle. Whether transfer
speed is limited by data mover file read/write performance

Figure 3. Pipelining in Globus GridFTP. Delays due to waiting
for acknowledgements (left) are reduced by sending multiple
requests at once (right).

or network send/receive performance (Liu et al. 2018a), the
single data mover imposes a bottleneck. Similar concerns
arise, albeit at a reduced level, when the number of large files
is less than the optimal concurrency level for an endpoint.

This analysis suggests that a superior approach to
transferring a single large file (or a small number of large
files) could instead be to partition the task of transferring
the large file(s) among multiple data movers. To investigate
the feasibility of this approach, we leveraged the partial
file transfer capability of the Globus GridFTP server
implementation to engage multiple data mover pairs at
the source and destination to process disjoint file chunks
independently, reading and transmitting them at the source,
and receiving and writing them at the destination.

In more detail, the transfer of a file with chunking
proceeds as follows. First, during the set up phase, we:
determine chunk size, S, and concurrency, N , either via
some heuristic or by reference to a configuration parameter;
create N source-destination data mover pairs, and establish
connections between the data movers in each pair; and
allocate chunks among data movers. Then, each data mover
pair proceeds to transmit chunks, using the extended retrieve
(ERET) and extended store (ESTO) rather than the regular
retrieve and store (RETR and STOR) commands, so as
to allow for partial transfers. Pipelining is also used to
ensure that individual data movers are not kept waiting for
acknowledgements; as a consequence, chunks should not be
too large. The implementation keeps track of which chunks
have been transmitted successfully so as to enable efficient
partial restarts upon failures.

Optimization of Integrity Checking Calculations
The Globus transfer service is configured by default to
perform integrity checking on all files that it transfers,
in order to detect data corruption due to such factors as
faulty file system I/O or data transmission. Specifically, a
Globus source node computes a 32-bit MD5 checksum for
a file when reading it to transmit; the corresponding Globus
destination node, upon receiving the file, first writes it to
storage and then re-reads the file and computes a second
checksum. If the two checksums differ, an error is recorded
and the file transfer is repeated. Integrity checking errors
are rare but do occur, often but not always in bursts due
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Figure 4. A sketch of activity over time for a non-chunked (above) and chunked (below) transfers, both with integrity checking. With
‘time’ on the horizontal axis, the non-chunked transfer must wait until the entire file is transferred (blue) before performing its
integrity check (orange), leading to longer end-to-end times. In the chunked file case, not only do multiple GridFTP processes
transfer different portions of a file in parallel, but transfer and integrity checks execute concurrently. (For simplicity, we show the
integrity check cost being incurred only after the transfer; in practice, some modest cost also is incurred when first reading the file.)

to faulty equipment, and thus this feature is an important
element of the Globus service that, as far as we know, is
rarely disabled. We note that Globus checksumming is in
addition to and independent of checksumming performed by
TCP, which only concerns data transmission, not file I/O,
and furthermore uses an inadequate 16-bit checksum value
(Stone and Partridge 2000).

While essential for most if not all science applications,
the costs of both computing the checksums and re-reading
the file at the destination can be considerable. Thus, we
explored the feasibility of leveraging file chunking to enable
concurrency and pipelining of checksum computations.
Specifically, we extended the algorithm described above to
compute and transmit a partial checksum with each ERET /
ESTO pair, thus distributing the costs of checksumming and
performing the additional file read operation over multiple
data movers, as illustrated in Figure 4.

Experiments and Results
We conducted experiments between three HPC systems: the
Argonne Leadership Computing Facility (ALCF) at Argonne
National Laboratory; the National Energy Research Sci-
entific Computing Center (NERSC) at Lawrence Berkeley
National Laboratory; and the Oak Ridge Leadership Com-
puting Facility (OLCF) at Oak Ridge National Laboratory.
Our experiments engaged high-performance Lustre file sys-
tems (Schwan 2003) at each facility: at ALCF, the Eagle file
system; at NERSC, the Perlmutter scratch file system; and at
OLCF, the Orion file system. Each facility operates multiple
DTNs that are connected at high speeds to their associated
file system, and to the ESnet wide area network at 100 Gb/s.

We performed five main sets of experiments, to measure:

• The impact of Lustre striping on transfer performance.
• The impact of Globus chunk size on transfer

performance.
• The impact of integrity checking on transfer perfor-

mance.
• The impact of varying the number of files being

transferred on transfer performance.
• The impact of chunking on transfers involving varying

numbers of files.

All experiments were run with concurrency = 64
and parallelism = 4, and all experiments that involved
checksumming employed the default MD5SUM algorithm.

Striping in Lustre
The Lustre file system is employed widely in HPC systems,
including at the three facilities considered in this work.
We determined during our early investigations that a Lustre
configuration parameter, specifically the number of Object
Storage Targets (OSTs) over which a file was distributed,
has a significant impact on the performance achieved when
transferring one or a small number of large files. Here we
report on experiments that quantify this impact and guide
choices made in subsequent experiments.

Lustre allows administrators and users to specify striping
of data across multiple OSTs, at the file system, directory,
or individual file level. Striped files can then be accessed
concurrently by multiple processes, boosting aggregate data
throughput. Striping also enables the storage of files whose
size exceeds the capacity of a single OST.
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Figure 5. Impact of Lustre stripe count on Globus transfer
performance for a 1×2.5 TB file transfer between ALCF (A) and
NERSC (N), both with and without chunking. All transfers were
conducted without integrity checking.

Striping also has drawbacks such as increased system
overhead from heightened network activities and server
competition, and can increase the numbers of files corrupted
by a single hardware failure. Lustre allows users to
manage tradeoffs among these different factors by fine-
tuning striping parameters, including stripe size and count,
to optimize performance and reliability for specific needs—
subject however to limits imposed by system administrators.

Unlike Globus chunking, which impacts both file I/O and
network transfers, Lustre striping impacts file I/O alone.
Thus, for example, if transferring a chunked file with
concurrency level of 2, then at the source endpoint two data
movers work concurrently to read independent chunks of
the file; if Lustre striping is engaged with striping 3, each
data mover read operation retrieves data from three OSTs,
and thus overall we would see read operations from the two
data movers engaging up to six OSTs. Thus, depending on
configuration details, Globus chunking and Lustre striping
can either complement each other or work at cross purposes.
Care must be taken to configure these different parameters in
order to optimize performance and storage scalability.

Here we report on experiments in which we study the
impact on data transfer performance of varying the Lustre
stripe count, with the goal of determining the Lustre
configurations that yield the highest transfer speeds. We
measure speeds achieved for a 1×2.5 TB transfer with Lustre
stripe counts from 1 to 16, both with and without chunking,
and without integrity checking. We perform transfer tests
between ALCF and NERSC, in both directions—from ALCF
to NERSC (A2N) and from NERSC to ALCF (N2A). The
Lustre stripe size is set to 1 MB.

Our results, in Figure 5, show that in most test scenarios
transfer speeds vary little (by less than 20%) with Lustre
stripe count. However, for NERSC to ALCF transfers with
chunking, increasing stripe count from 1 (the default on both
systems) to 16 increased throughput by 8.1×, from 3.92 Gb/s
to 31.76 Gb/s. (It then declines for a stripe count of 64.) We
did not explore this phenomenon further, but observe that it
highlights the importance of Lustre configuration for Globus
transfers, which in many cases are rate-limited as much by

file system I/O performance as by network bandwidth. In all
subsequent experiments, we set the Lustre stripe count to 16.

Impact of Globus Chunk Size
Chunk size, the size of each data segment transferred when
using chunking, is a critical parameter for Globus transfers.
To determine the impact of chunk size on Globus transfer
throughput, we conducted tests between ALCF (A) and
NERSC (N) for a variety of chunk sizes. We performed
experiments for three 500 GB transfer scenarios, involving
1×500 GB, 5×100 GB, and 20×25 GB files, respectively.
We tested each configuration both from ALCF to NERSC
(A2N) and NERSC to ALCF (N2A).

We present our results in Figure 6. (In these results
and those that follow, we ran each experiment 3–4 times
and show in the figure both the average and one standard
deviation either side of that average.) In all three cases
(1×500 GB, 5×100 GB, 20×25 GB), performance tends
first to increase with chunk size over the range 50 MB to
500 MB and then to decrease as chunk size increases further
to 5000 MB. We attribute the initial increasing trends to
the larger chunk sizes allowing for more effective utilization
of network bandwidth, and the subsequent decreases to
decreased opportunities for parallelism for larger chunk sizes
(e.g., with a chunk size of 5000 MB for a single 500 GB file,
only 100 chunks are available, which is less than the product
of the number of GridFTP control channel sessions and the
number of separate TCP connections, which is 64×4 = 256.)

We note that the performance gains from increasing chunk
size are significantly less (at most 15%) in the 1×500 GB
case. We attribute this result to greater bottlenecks and
increased competition for resources when handling a single
file. This observation is underscored by the fact that
the throughput improvement for the 20×25 GB case is
significantly greater than that with 5×100 GB files.

Integrity checking Costs
We emphasize that in most cases, Globus integrity checking
is crucial for ensuring correct data tranmission. Nevertheless,
we want to understand the performance impact of integrity
checking so as to guide optimizations. To that end, we
conducted tests across ALCF, NERSC, and OLCF in which
we measured data transfer performance for the same three
tasks considered in the chunk size study (i.e., 1×500 GB,
5×100 GB, and 20×25 GB files), with and without integrity
checking. For the chunking experiments, we experimented
with different chunk sizes and selected the configuration
that delivered the fastest throughput, which in all subsequent
experiments was either 200 MB or 500 MB.

We show in Figure 7 throughput with and without
integrity checking, both without (above) and with (below)
chunking. We observe first (upper subfigures) that integrity
checking impacts throughput significantly in the non-
chunking cases. For example, transfer speed is roughly
halved for both A2N and N2A, an effect that declines
somewhat for some source-destination pairs with more files,
but remains pronounced. With chunking (lower subfigures),
the performance degradation persists but is much less
pronounced, particularly when more files are involved.
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Figure 6. Impact of Globus chunk sizes on performance achieved for 500 GB transfers between ALCF and NERSC, for different
numbers of files. All transfers were conducted with integrity checking.
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Figure 7. 500 GB transfers, in from 1 to 20 files, among three facilities, with and without integrity checking.
Above: Without chunking. Below: With chunking.

To focus in on these differences, we show in Figure 8
a different view of the A2N and N2A data. Transfer and
integrity checking (‘checksum’) times, averaged across the
sets of 4 experiments for which results are provided in
Figure 7, are presented in stacked bar chart form, both with
and without chunking. We observe, looking left to right,
that as the number of files increases from 1 to 20, transfer
and integrity checking times both decrease substantially. For
example, for transfer tasks without chunking from ALCF
to NERSC, the average integrity checking time decreases
significantly, from 773 s to 60.7 s, as the number of files
increases from 1 to 20. With chunking, the decrease is from
53.7 s to 21.7 s. For the 1×500 GB task, integrity checking
times without and with chunking are 773 s and 53.7 s,
respectively, emphasizing the importance of chunking for
single (or few) large file(s) transfers. Overall, we see that
by allowing integrity checking operations to be performed in
parallel, chunking enhances throughput significantly. These
results underscore the benefits of parallelizing integrity
checking for data transfer performance.

Single vs. Multiple File Transfers
Here we investigate how performance varies with the number
of files in a task. In addition to the 1×500 GB, 5×100 GB,
and 20×25 GB tasks considered in previous experiments,
we also consider 100×5 GB and 500×1 GB. We measured
throughput both with and without chunking, and with
integrity checking. For the tests that employ chunking,
we also assessed multiple chunk sizes to determine the
configuration that yields optimal performance.

Our results, in Figure 9, demonstrate that for this fixed
total transfer size of 500 GB, it is always faster to transfer
multiple smaller files than a single large file, due to the
considerable opportunities for parallelism in the former
case, although the magnitude of this difference is reduced
when chunking is employed. For example, for ALCF to
NERSC without chunking (the upper row in the figure),
increasing the number of files from 1 to 500 boosted transfer
speed from 1.98 Gb/s to 46.48 Gb/s: a 23-fold increase.
Similarly, for NERSC to ALCF, increasing the file count
to 500 results in more than a 28-fold speedup. However,
when Globus chunking is enabled (the bottom row), the
performance differential between single-file and many-file
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transfers decreases significantly. For the ALCF to NERSC
route, the speedup reduces from 23 to 1.9, and for NERSC to
ALCF, from 28 to 3.

Transfers With and Without Chunking
Finally, we explore the impacts of chunking on transfer
tasks involving 1×500 GB, 5×100 GB, and 20×25 GB
files. Our results, in Figure 10, show that chunking has clear
benefits when transferring a few files, but that these benefits
largely disappear for many files. Specifically, we find that
chunking yields peak speedups of up to 9.5× (for A2N) and
5× (for A2N) for the single-file and five-file transfer cases,
respectively, but for the 20-file case, the maximum speedup
diminishes to 1.6 (O2N), while there is even some slowdown
in some cases (e.g., O2N). It may be significant that chunking
performs better in the 20-file case for the larger round-trip-
time (RTT) ALCF-NERSC and NERSC-OLCF cases than
for the lower RTT ALCF-OLCF case.

Related Work
We summarized above several studies that focused particu-
larly on Globus GridFTP performance. Here we note other
relevant work.

Tierney et al. (1994, 1999) conducted pioneering work
on striping as a means of accelerating remote data access

applications, and Kettimuthu et al. (2010) reviewed factors
that can influence the speed of large transfers.

The performance achieved for a particular data transfer
can depend significantly on numerous configuration choices,
including the network protocol used: e.g., TCP or UDP-
based alternatives (He et al. 2002; Gu and Grossman
2007); number of data movers (Kettimuthu et al. 2014);
number of TCP streams (Sivakumar et al. 2000; Hacker
et al. 2002; Lu et al. 2005); TCP window size (Floyd
2003); TCP variant (Bullot et al. 2003; Leith and Shorten
2004; Wei et al. 2006); degree of pipelining, file system
striping; and use of redundant paths (Zhang et al. 2004).
Researchers have investigated the impact of such parameters
on the performance achieved for different transfer tasks and
in different environments (Ito et al. 2005), and proposed
methods for selecting such parameters automatically (Prasad
et al. 2003; Yildirim et al. 2015; Arslan and Kosar
2018). They have also investigated the impact of transfer
parameters on different performance metrics (e.g., latency
vs. bandwidth) and on properties other than performance,
such as energy consumption (Alan et al. 2015) and impact
on competing flows (Hacker et al. 2002; Lu et al. 2005).
These are factors that could be considered in Globus, which
currently focuses on bandwidth.

In other related work, Liu et al. (2016) discuss block-
level streaming computation of checksums to accelerate
integrity checking, while Arslan and Alhussen (2018)
discuss ways in which integrity checking costs can be
reduced by careful organization of checksum computations
and file I/O operations. Arifuzzaman and Arslan (2021)
use online optimization to select transfer parameters.
Charyyev and Arslan (2020) examine how detection of
file corruption errors can be enhanced by ensuring that
checksum calculations are performed on disk-resident rather
than cached data. Various researchers have investigated
compression of data to be communicated over networks
(Cappello et al. 2019; Foster et al. 2017).

Conclusions

We have reported on our development and evaluation of
a new capability in the Globus transfer service designed
to accelerate movement of individual large files. The key
development here is the addition of support for the (logical)
chunking of large files into disjoint subsets that are then
transmitted by distinct data movers, in ways that also allow
for enhanced overlapping of checksum computations with
data movement. We demonstrate by careful experimentation
that these developments can deliver significant performance
benefits. For example, we find that when transferring a single
500GB file from ALCF to NERSC, chunking increases
performance by a factor of 9.5.

We can also point to other opportunities for further
optimizations. In the current implementation, chunking is
enabled manually, either on a per-user basis or by a user
labeling a transfer. Large-scale deployment would likely
require automation of decisions concerning which transfers
to chunk and what chunk size to employ, with the latter
potentially being set based on the file in hand. Our results
also suggest that significant opportunities remain for further
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optimization of integrity checking, perhaps by application of
methods proposed by Arslan et al. (2018).

This work also points to the importance of managing
parallel file system striping parameters. We found that for
transfers between Lustre file systems, tuning the Lustre stripe
count can improve the transfer throughput by up to 8.1×.
Thus we may want Globus to allow the administrator of a
Globus collection that contains a few large files to enable
chunking for that dataset. The specified stripe width would
then need to be communicated from the Globus service to
the local Globus Connect Server agent, which in turn would
set the stripe width using the API or CLI provided by the file
system.

Our experiments also provide insights into the growing
costs of integrity checking as increased network speeds
reduce the time taken for data transmission. Such trends may
motivate the use of alternative checksumming algorithms.
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